
期望一致与技术接受:公众对政务数字人接纳意愿研究
Expectation Confirmation and Technology Acceptance: A Study of the Public's Attention to Accept the Government's Digital Human Avatar
[目的/意义] 政务数字人作为数字政府建设的重要组成部分,其应用效果与公众接纳意愿密切相关。本研究旨在探讨影响公众对于政务数字人接纳意愿的因素及路径,为改善政务数字人服务和提升用户体验提供参考。 [方法/过程] 整合期望一致理论(ECT)和技术接受模型(TAM),在ECT的基础上扩展用户感知因素,采用结构方程模型从整体上解释公众接纳意愿的影响因素及其关系,利用中介效应模型检验影响因素的作用路径机制。 [结果/结论] 公众期望一致能够提升公众对政务数字人的满意度,公众满意度正向影响接纳意愿。感知信息质量、感知智能、感知便利、感知吸引力、感知有用性、人工智能信任在公众期望一致、满意度以及接纳意愿之间存在链式中介作用。
[Purpose/Significance] In the digital age, government digital avatars represent a significant innovative application of the integration of generative artificial intelligence and digital government. These digital avatars aim to enhance the efficiency, accessibility, and responsiveness of public services. This study aims to explore the factors and pathways that influence public acceptance of government digital avatars, providing a theoretical basis and practical insights for improving these services and enhancing the user experience. Unlike previous studies that have focused primarily on technological and functional aspects, this research emphasizes users' perceptions and expectations, filling the gap in existing research on user experience. This innovation of this paper lies in the integration of the Expectation Confirmation Theory (ECT) and the Technology Acceptance Model (TAM) and the extension of other user perception factors to systematically analyze how these factors together influence public acceptance. [Method/Process] The study adopts a comprehensive approach, integrating the Expectation Confirmation Theory (ECT) and the Technology Acceptance Model (TAM), and extends the framework to include additional user perception factors such as perceived information quality, perceived intelligence, perceived convenience, perceived attractiveness, perceived usefulness, and AI trust. Structured questionnaires were used to collect data from a diverse sample, measuring constructs such as expectation confirmation, satisfaction, and various user perception factors. The data were analyzed using structural equation modeling (SEM), which provides robust statistical insights into the relationships between these constructs. In addition, mediation effect models were used to examine indirect effects, providing a comprehensive understanding of how these factors influence public acceptance. Data were collected from a diverse group of respondents to ensure the findings are broadly applicable and representative. [Results/Conclusions] The results suggest that expectation confirmation significantly increases public satisfaction with government digital avatars, which in turn positively affects their acceptance. Perceived information quality, perceived intelligence, perceived convenience, perceived attractiveness, perceived usefulness, and AI trust serve as critical mediators in this relationship. In particular, high levels of perceived quality and intelligence significantly increase satisfaction and acceptance, while convenience and attractiveness also play an important role. AI trust emerges as a critical factor, mediating the impact of user perceptions on acceptance. However, the study does have some limitations. First, the lack of understanding of the professional backgrounds of the research population may lead to differences in acceptance between different professional groups. Future research should look more closely at different occupational groups to gain a fuller understanding. Second, the sample consisted mainly of respondents from younger demographic groups, which may affect the generalizability of the conclusions. Future research should broaden the geographical and demographic coverage of the sample to increase diversity and representativeness. In addition, the lack of qualitative research limits the depth of understanding of users' deep-seated views and needs about government digital avatars. Future research should include qualitative components, such as in-depth interviews and focus group discussions, to explore the actual experiences and specific needs of users and to complement the quantitative findings. This study provides practical recommendations for improving user satisfaction and acceptance, and for supporting the development of effective digital governance solutions. By specifically optimizing government digital avatar services, public satisfaction and trust in digital government services can be increased, further promoting the application and development of digital avatar technology in digital government.
政务数字人 / 数字政府 / 公众接纳意愿 / 期望一致 / 技术接受 {{custom_keyword}} /
government digital human avatar / digital government / public acceptance intention / ECT / TAM {{custom_keyword}} /
表1 变量的测量题项及来源Table 1 Measurement items and sources of variables |
变量 | 题项 | 问题 | 来源 |
---|---|---|---|
感知信息质量(IQ) | IQ1 | 我认为政务数字人提供的信息是非常可信的 | GHASEMAGHAEI和HASSANEIN[31] |
IQ2 | 我认为政务数字人提供的信息是非常准确的 | ||
IQ3 | 我认为政务数字人提供的信息是丰富、完善且全面的 | ||
IQ4 | 我认为政务数字人提供的信息非常清晰明了 | ||
感知智能(PI) | PI1 | 我认为政务数字人的专业能力很强,能够胜任政务咨询服务的工作 | BALAKRISHNAN[30] |
PI2 | 我认为政务数字人可以以一种更高效、智能的方式提供政务咨询服务 | ||
PI3 | 我认为政务数字人具备很好的政务服务能力 | ||
PI4 | 我认为政务数字人具备提供政务咨询服务的专业技能 | ||
感知吸引力(PA) | PA1 | 我觉得政务数字人面部很有吸引力 | FILIERIR等[44] |
PA2 | 我觉得政务数字人被培养得很得体、很优雅 | ||
PA3 | 我喜欢政务数字人的外观 | ||
PA4 | 我认为政务数字人的形象对我而言是具有吸引力的 | ||
感知人格化(ANT) | ANT1 | 我认为政务数字人的外貌和人类很像 | HUANG和YU[16] |
ANT2 | 我认为政务数字人的声音很自然 | ||
ANT3 | 我发现政务数字人在提供咨询服务时,肢体工作优雅大方,自然流畅 | ||
ANT4 | 我觉得政务数字人在回答问题时,面部表情非常生动自然 | ||
感知便利(PC) | PC1 | 我觉得政务数字人的使用过程很方便 | LIN[45] |
PC2 | 我觉得政务数字人很有耐心,能让办事流程更为清晰,易懂 | ||
PC3 | 我觉得政务数字人能帮我快速获取想要的信息 | ||
人工智能信任(TR) | TR1 | 我认为政务数字人与我的互动是有效且具有胜任力的 | 计纬等[34] |
TR2 | 我认为政务数字人可以很好地发挥其角色作用 | ||
TR3 | 我认为政务数字人有能力,且业务熟练 | ||
TR4 | 我认为政务数字人对我的回答是诚实的 | ||
TR5 | 我认为政务数字人的服务真诚且真实 | ||
TR6 | 我认为政务数字人会以我的最大利益行事 | ||
变量 | 题项 | 问题 | 来源 |
感知有用性(PU) | PU1 | 我觉得使用政务数字人有助于提高政务服务绩效或表现 | BHATTACHERJEE[8]、DAVIS[39] |
PU2 | 我觉得使用政务数字人有助于提高政务服务的办事效率 | ||
PU3 | 我觉得使用政务数字人能使得办理业务变得更快速迅捷 | ||
PU4 | 我觉得数字政务人能满足我的办事需求,对我帮助很大 | ||
PU5 | 总的来说,对于居民办事,我感觉政务数字人非常有用 | ||
感知易用性(PE) | PE1 | 我感觉政务数字人的操作很简单 | BHATTACHERJEE[8]、LANKTON[46] |
PE2 | 我觉得学习使用政务数字人对我来说非常容易 | ||
PE3 | 我很自信能够快速学会并熟练使用政务数字人 | ||
PE4 | 总的来说,我认为政务数字人使用起来很容易 | ||
期望一致(CE) | CE1 | 我觉得政务数字人比我想象的要自然流畅 | BHATTACHERJEE[8]、HUANG和YU[16] |
CE2 | 我觉得政务数字人的外貌形象比我想象的要逼真 | ||
CE3 | 我觉得政务数字人的工作表现比我预期的要好 | ||
CE4 | 总的来说,我对政务数字人的大部分期望都得到了证实 | ||
满意度(SAT) | SAT1 | 我认为在政府政务大厅中使用政务数字人是一个明智的选择。 | 徐孝军等[47]、LI等[48] |
SAT2 | 与政务数字人进行沟通交流时会让我感到满意 | ||
SAT3 | 我对政务数字人的工作表现感到满意 | ||
SAT4 | 比起人工服务,我更喜欢政务数字人为我提供咨询服务 | ||
SAT5 | 总的来说,政务数字人的服务是令人满意的 | ||
接纳意愿(CI) | CI1 | 未来我继续使用政务数字人为我提供政务咨询服务的概率很高 | ASHFAQ等[49] |
CI2 | 如果有机会,我会向别人推荐使用政务数字人 | ||
CI3 | 未来我会尝试使用政务数字人获取更多相关政务信息 |
表2 样本人口统计学特征Table 2 Demographic characteristics of the sample |
变量 | 类别 | 频率/人 | 百分比/% | ||||
---|---|---|---|---|---|---|---|
性别 | 男 | 187 | 37.3 | ||||
女 | 314 | 62.7 | |||||
年龄 | 18岁以下 | 1 | 0.2 | ||||
18~25岁 | 288 | 57.5 | |||||
26~35岁 | 163 | 32.5 | |||||
36~45岁 | 36 | 7.2 | |||||
46~55岁 | 12 | 2.4 | |||||
55岁以上 | 1 | 0.2 | |||||
文化程度 | 高中及以下 | 18 | 3.6 | ||||
大专 | 41 | 8.2 | |||||
本科 | 350 | 69.9 | |||||
硕士 | 89 | 17.8 | |||||
博士 | 3 | 0.6 | |||||
对政务数字人的了解程度 | 从来没有听说过 | 94 | 18.8 | ||||
听说过,但不了解 | 130 | 25.9 | |||||
有些了解 | 163 | 32.5 | |||||
较为了解 | 93 | 18.6 | |||||
非常了解 | 21 | 4.2 |
表3 信度与聚合效度检验结果Table 3 Reliability and convergent validity test results |
变量 | 题项 | 标准化因子载荷 | Cronbach's α | CR | AVE |
---|---|---|---|---|---|
感知信息质量(IQ) | IQ1 | 0.848 | 0.796 | 0.872 | 0.630 |
IQ2 | 0.777 | ||||
IQ3 | 0.735 | ||||
IQ4 | 0.810 | ||||
感知智能(PI) | PI1 | 0.810 | 0.803 | 0.873 | 0.632 |
PI2 | 0.743 | ||||
PI3 | 0.831 | ||||
PI4 | 0.794 | ||||
感知吸引力(PA) | PA1 | 0.863 | 0.865 | 0.910 | 0.716 |
PA2 | 0.786 | ||||
PA3 | 0.876 | ||||
PA4 | 0.857 | ||||
感知人格化(ANT) | ANT1 | 0.723 | 0.835 | 0.880 | 0.648 |
ANT2 | 0.841 | ||||
ANT3 | 0.809 | ||||
ANT4 | 0.840 | ||||
感知便利(PC) | PC1 | 0.806 | 0.740 | 0.841 | 0.638 |
PC2 | 0.790 | ||||
PC3 | 0.800 | ||||
人工智能信任(TR) | TR1 | 0.720 | 0.788 | 0.911 | 0.631 |
TR2 | 0.819 | ||||
TR3 | 0.758 | ||||
TR4 | 0.827 | ||||
TR5 | 0.792 | ||||
TR6 | 0.845 | ||||
感知有用性(PU) | PU1 | 0.702 | 0.850 | 0.880 | 0.722 |
PU2 | 0.760 | ||||
PU3 | 0.809 | ||||
PU4 | 0.799 | ||||
PU5 | 0.788 | ||||
感知易用性(PE) | PE1 | 0.778 | 0.836 | 0.891 | 0.673 |
PE2 | 0.856 | ||||
PE3 | 0.773 | ||||
PE4 | 0.870 | ||||
期望一致(CE) | CE1 | 0.801 | 0.781 | 0.864 | 0.613 |
CE2 | 0.745 | ||||
CE3 | 0.802 | ||||
CE4 | 0.782 | ||||
满意度(SAT) | SAT1 | 0.742 | 0.811 | 0.877 | 0.588 |
SAT2 | 0.770 | ||||
SAT3 | 0.801 | ||||
SAT4 | 0.703 | ||||
SAT5 | 0.814 | ||||
接纳意愿(CI) | CI1 | 0.820 | 0.753 | 0.860 | 0.672 |
CI2 | 0.821 | ||||
CI3 | 0.819 |
表4 区分效度检验结果Table 4 Discriminant validity test results |
变量 | AVE | IQ | PI | PA | ANT | PC | TR | PU | PE | CE | SAT | CI |
---|---|---|---|---|---|---|---|---|---|---|---|---|
IQ | 0.630 | 0.794 | ||||||||||
PI | 0.632 | 0.704 | 0.795 | |||||||||
PA | 0.716 | 0.539 | 0.506 | 0.846 | ||||||||
ANT | 0.648 | 0.569 | 0.556 | 0.707 | 0.805 | |||||||
PC | 0.638 | 0.632 | 0.686 | 0.514 | 0.498 | 0.799 | ||||||
TR | 0.631 | 0.697 | 0.726 | 0.574 | 0.628 | 0.717 | 0.794 | |||||
PU | 0.722 | 0.637 | 0.632 | 0.483 | 0.478 | 0.711 | 0.706 | 0.850 | ||||
PE | 0.673 | 0.544 | 0.502 | 0.337 | 0.390 | 0.608 | 0.606 | 0.592 | 0.820 | |||
CE | 0.613 | 0.602 | 0.629 | 0.652 | 0.703 | 0.635 | 0.729 | 0.645 | 0.501 | 0.783 | ||
SAT | 0.588 | 0.630 | 0.692 | 0.562 | 0.607 | 0.702 | 0.704 | 0.712 | 0.576 | 0.737 | 0.767 | |
CI | 0.672 | 0.592 | 0.595 | 0.488 | 0.521 | 0.703 | 0.731 | 0.713 | 0.560 | 0.621 | 0.736 | 0.820 |
*注:对角线上的黑体数字为AVE的平方根 |
表5 结构方程模型检验结果Table 5 Test results of the structural equation model |
假设 | 假设路径 | 估计值 | 标准误 | 显著性 | 检验结果 |
---|---|---|---|---|---|
H1a | 期望一致→满意度 | 0.961 | 0.451 | *** | 成立 |
H1b | 满意度→接纳意愿 | 0.403 | 0.151 | ** | 成立 |
H2a | 感知有用性→满意度 | 0.413 | 0.071 | *** | 成立 |
H2b | 感知有用性→接纳意愿 | 0.520 | 0.143 | *** | 成立 |
H2c | 期望一致→感知有用性 | 0.728 | 0.054 | *** | 成立 |
H3a | 感知吸引力→满意度 | 0.074 | 0.031 | * | 成立 |
H3b | 期望一致→感知吸引力 | 0.960 | 0.075 | *** | 成立 |
H3c | 感知人格化→满意度 | 0.066 | 0.024 | * | 成立 |
H3d | 期望一致→感知人格化 | 0.954 | 0.032 | * | 成立 |
H4a | 感知智能→满意度 | 0.179 | 0.091 | * | 成立 |
H4b | 期望一致→感知智能 | 0.207 | 0.082 | *** | 成立 |
H4c | 感知信息质量→满意度 | 0.324 | 0.091 | *** | 成立 |
H4d | 期望一致→感知信息质量 | 0.854 | 0.059 | *** | 成立 |
H4e | 感知便利→满意度 | 0.406 | 0.190 | * | 成立 |
H4f | 期望一致→感知便利 | 0.902 | 0.061 | *** | 成立 |
H5a | 人工智能信任→满意度 | 0.549 | 0.275 | * | 成立 |
H5b | 期望一致→人工智能信任 | 0.854 | 0.054 | *** | 成立 |
H6a | 感知易用性→感知有用性 | 0.195 | 0.034 | *** | 成立 |
H6b | 感知易用性→满意度 | 0.073 | 0.028 | ** | 成立 |
*注:***、**、*分别代表P<0.001,P<0.01,P<0.05 |
表6 链式中介效应Table 6 Serial mediation effects |
序号 | 中介变量 | 路径 | 间接效应 | Boot S.E. | 95%CI | 中介效应 | |
---|---|---|---|---|---|---|---|
下限 | 上限 | ||||||
1 | 感知信息质量、公众满意度 | CE→IQ→CI | 0.109 | 0.033 | 0.050 | 0.177 | 是 |
CE→SAT→CI | 0.302 | 0.042 | 0.221 | 0.385 | 是 | ||
CE→IQ→SAT→CI | 0.081 | 0.020 | 0.046 | 0.125 | 是 | ||
2 | 感知智能、公众满意度 | CE→PI→CI | 0.072 | 0.030 | 0.013 | 0.131 | 是 |
CE→SAT→CI | 0.249 | 0.038 | 0.177 | 0.328 | 是 | ||
CE→PI→SAT→CI | 0.101 | 0.023 | 0.061 | 0.149 | 是 | ||
3 | 感知便利、公众满意度 | CE→PC→CI | 0.191 | 0.041 | 0.111 | 0.271 | 是 |
CE→SAT→CI | 0.215 | 0.032 | 0.154 | 0.278 | 是 | ||
CE→PC→SAT→CI | 0.116 | 0.025 | 0.070 | 0.168 | 是 | ||
4 | 感知吸引力、公众满意度 | CE→PA→CI | 0.035 | 0.031 | -0.025 | 0.096 | 否 |
CE→SAT→CI | 0.344 | 0.048 | 0.252 | 0.440 | 是 | ||
CE→PA→SAT→CI | 0.045 | 0.021 | 0.008 | 0.088 | 是 | ||
5 | 感知人格化、公众满意度 | CE→ANT→CI | 0.033 | 0.033 | -0.031 | 0.098 | 否 |
CE→SAT→CI | 0.359 | 0.051 | 0.264 | 0.463 | 是 | ||
CE→ANT→SAT→CI | 0.033 | 0.022 | -0.009 | 0.077 | 否 | ||
6 | 人工智能信任、公众满意度 | CE→TR→CI | 0.222 | 0.040 | 0.144 | 0.302 | 是 |
CE→SAT→CI | 0.167 | 0.030 | 0.110 | 0.228 | 是 | ||
CE→TR→SAT→CI | 0.146 | 0.029 | 0.092 | 0.205 | 是 | ||
7 | 感知有用性、公众满意度 | CE→PU→CI | 0.312 | 0.051 | 0.211 | 0.410 | 是 |
CE→SAT→CI | 0.100 | 0.025 | 0.055 | 0.152 | 是 | ||
CE→PU→SAT→CI | 0.101 | 0.028 | 0.051 | 0.160 | 是 | ||
8 | 感知有用性、公众满意度 | PE→PU→CI | 0.247 | 0.046 | 0.159 | 0.340 | 是 |
PE→SAT→CI | 0.043 | 0.014 | 0.020 | 0.072 | 是 | ||
PE→PU→SAT→CI | 0.112 | 0.029 | 0.059 | 0.173 | 是 |
1 |
中华人民共和国中央人民政府. 中华人民共和国国民经济和社会发展第十四个五年规划和2035年远景目标纲要[EB/OL]. [2021-03-13].
{{custom_citation.content}}
{{custom_citation.annotation}}
|
2 |
中华人民共和国中央人民政府. 数字中国建设整体布局规划[EB/OL]. [2023-02-27].
{{custom_citation.content}}
{{custom_citation.annotation}}
|
3 |
刘玮. ChatGPT类生成式人工智能嵌入数字政府建设: 可供、限制与优化——基于技术可供性视角[J]. 情报理论与实践, 2023, 46(10): 69-76.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
4 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
5 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
6 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
7 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
8 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
9 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
10 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
11 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
12 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
13 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
14 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
15 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
16 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
17 |
赵雪芹, 刘雅宁. 在线视频用户关闭弹幕的影响因素研究[J]. 新闻与传播评论, 2018, 71(5): 16-26.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
18 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
19 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
20 |
李望平, 苏冬燕, 陈晓星, 等. 基于技术接受模型和计划行为理论的内陆核电站重启公众接受度研究[J]. 科技管理研究, 2023, 43(1): 171-180.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
21 |
TAM C,
{{custom_citation.content}}
{{custom_citation.annotation}}
|
22 |
吴晓波, 张伟齐, 李思涵, 等. 基于技术接受模型(TAM)的智能投资顾问用户采纳意愿链式影响机制研究[J]. 浙江大学学报(人文社会科学版), 2023, 53(7): 5-19.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
23 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
24 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
25 |
庞洋. 生成式人工智能嵌入数字政府建设的系统性分析[J]. 学术交流, 2023(8): 148-162.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
26 |
杨舒文, 包林. 数字媒体艺术中的虚拟性身体形象建构[J]. 中国高校社会科学, 2023(4): 133-141.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
27 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
28 |
刘斌, 崔茉琳. ChatGPT时代的虚拟数字人: 拟主体对人类认知与行为的中介[J]. 西南民族大学学报(人文社会科学版), 2023, 44(11): 126-132.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
29 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
30 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
31 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
32 |
李桥. 高速铁路旅客感知便利性对旅客满意和忠诚的影响研究[J]. 铁道学报, 2021, 43(6): 1-7.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
33 |
汤志伟, 龚泽鹏, 韩啸, 等. 公众对智能政务服务和人工政务服务的感知与选择——基于调查实验的研究发现[J]. 电子政务, 2023(9): 105-116.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
34 |
计纬, 戚海峰, 费鸿萍. 智能助手对消费者的推荐说服机制研究——基于社会角色视角[J/OL]. 南开管理评论, 2024: 1-23.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
35 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
36 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
37 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
38 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
39 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
40 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
41 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
42 |
刘春明, 王丹, 周杨. 高校教师移动学习平台信息采纳行为研究[J]. 情报科学, 2024, 42(2): 109-118.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
43 |
朱哲慧, 袁勤俭. 技术接受模型及其在信息系统研究中的应用与展望[J]. 情报科学, 2018, 36(12): 168-176.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
44 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
45 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
46 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
47 |
许孝君, 程光辉, 钱丹丹, 等. 数字经济下旅游商务网站信息生态链运行机制对用户感知的影响研究[J]. 情报科学, 2023, 41(9): 78-86.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
48 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
49 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
50 |
毕达天, 张雪, 米艳霖, 等. 算法感知视角下跨平台信息推荐用户接纳意愿研究[J]. 图书情报工作, 2023, 67(21): 100-110.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |