[目的/意义]利用专利的动态特征识别技术转移潜力,可为高校和科研院所开展专利分级管理和运营工作提供支撑,促进专利技术的产业化。[方法/过程]专利特征在其生命周期呈现动态演变,本文基于动态专利引文网络,从动态发展的视角构建动态和静态相结合的专利技术转移潜力评价指标体系;以转让或许可专利的动态特征为学习对象,采用决策树方法建立技术转移预测模型,并进行实证模型检验。[结果/结论]专利在引文网络中的影响力对其转移转化潜力有较大的作用,实证检验基于决策树的转移预测模型具有较高的预测效果。通过监测专利动态特征,利用模型进行转移转化潜力评估,及时筛选出易于转让或许可的专利开展针对性的产业化运营。
Abstract
[Purpose/Significance] Using the dynamic characteristics of patents to identify their potential for technology transfer will help universities and research institutes to carry out patent grading management and operation, and promote the industrialization of patented technologies. [Method/Process] Patent characteristics present dynamic evolution in its life cycle. Based on the dynamic patent citation network, this article constructs a dynamic and static patent technology transfer potential evaluation index system from the perspective of dynamic development; takes the dynamic characteristics of the transferred or licensed patent as the learning object and adopts the decision tree method to establish technology transfer prediction model and conducts an empirical model test. [Results/Conclusions] The influence of patents in the citation network has a greater role in its transfer and conversion potential. The empirical test of the transfer prediction model based on decision trees has a high predictive effect. By monitoring the dynamic characteristics of patents, the model is used to evaluate the transfer and conversion potential in a timely manner and screen out patents that are easy to transfer or license to carry out targeted industrialization operation.
关键词
专利 /
技术转移 /
社会网络分析 /
决策树
{{custom_keyword}} /
Key words
patent /
technology transfer /
social network analysis /
decision tree
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 朱相丽, 谭宗颖, 万昊. 识别有技术转移潜力的专利方法综述[J]. 图书情报工作, 2016, 60(8): 132-138.
ZHU X L, TAN Z Y, WAN H.Research review on patent analysis methods of identifying technology's transfer potential[J]. Library and information service, 2016, 60(8): 132-138.
[2] 李建蓉. 专利文献与信息[M]. 北京: 知识产权出版社, 2002.
LI J R.Patent literature and information[M]. Beijing: Intellectual property press, 2002.
[3] 杨林松. 国际技术转移中专利技术转移研究[J]. 工业技术创新, 2014, 1(2): 221-225.
YANG L S.Research on patent technology transfer in international technology transfer[J]. Industrial technology innovation, 2014, 1(2): 221-225.
[4] 国家知识产权局, 2020年中国专利调查报告[EB/OL]. [2021-05-01]. https://www.cnipa.gov.cn/module/download/down.jsp?i_ID=158969&colID=88.
State intellectual property office, 2020 China patent investigation report[EB/OL]. [2021-05-01]. https://www.cnipa.gov.cn/module/download/down.jsp?i_ID=158969&colID=88.
[5] 张米尔, 国伟, 李海鹏. 专利动态特征与专利诉讼: 基于智能手机产业的研究[J]. 管理科学, 2020, 33(4): 98-106.
ZHANG M E, GUO W, LI H P.Patent dynamic feature and patent litigation: an empirical study centering on the smartphone industry[J]. Journal of management science, 2020, 33(4): 98-106.
[6] JAFFE A B, RASSENFOSSE G D.Patent citation data in social science research: Overview and best practices[J]. Journal of the American society for information science and technology, 2017, 68(6): 1360-1374.
[7] BRESCHI S, F LISSONI. Knowledge networks from patent data: Methodological issues and research targets[J]. KITeS working papers, 2004.
[8] ATALLAH G, RODRIGUEZ G.Indirect patent citations[J]. Scientometrics, 2006, 67(3): 437-465.
[9] 宋河发, 穆荣平, 陈芳. 专利质量及其测度方法与测度指标体系研究[J]. 科学学与科学技术管理, 2010, 31(4): 21-27.
SONG H F, MU R P, CHEN F.Study on the patent quality and it's measurement index system[J]. Science of science and management of S. &. T., 2010, 31(4): 21-27.
[10] WANG J C, CHIANG C H, LIN S W.Network structure of innovation: Can brokerage or closure predict patentquality?[J]. Scientometrics, 2010, 84(3): 735-748.
[11] SOHN S Y, MOON T H.Structural equation model for predicting technology commercialization success index (TCSI)[J]. Technological forecasting & social change, 2003, 70(9): 885-899.
[12] CHIU Y J, CHEN Y W.Using AHP in patent valuation[J]. Mathematical & computer modelling, 2007, 46(7): 1054-1062.
[13] TONG X, FRAME J D.Measuring national technological performance with patent claims data[J]. Research policy, 1994, 23(2): 133-141.
[14] 王天歌, 王金苗, 袁红梅. 基于专利维度的我国生物医药核心技术的识别与分析[J]. 情报杂志, 2016, 35(4): 112-117.
WANG T G, WANG J M, YUAN H M.Identification and analysis of bio - Pharmaceutical industry's core technology based on patent analysis[J]. Journal of intelligence, 2016, 35(4): 112-117.
[15] PARK H, REE J J, KIM K.Identification of promising patents for technology transfers using TRIZ evolution trends[J]. Expert systems with applications, 2013, 40(2): 736-743.
[16] WANG G, TIAN X, GENG J.Optimal selection method of process patents for technology transfer using fuzzy linguistic computing[J]. Mathematical problems in engineering, 2014(1): 1-10.
[17] PARK Y, LEE S, LEE S.Patent analysis for promoting technology transfer in multi-technology industries: the Korean aerospace industry case[J]. Journal of technology transfer, 2012, 37(3): 355-374.
[18] CHOI J, JANG D, JUN S, et al.A predictive model of technology trans-fer using patent analysis[J]. Sustainability, 2015, 7(12): 16175-16195.
[19] 张克群, 魏晓辉, 郝娟, 等. 基于社会网络分析方法的专利价值影响因素研究[J]. 科学学与科学技术管理, 2016, 37(5): 67-74.
ZHANG K Q, WEI X H, HAO J, et al.The study of the influencing factors of patent value by using social network analysis[J]. Science of science and management of S. &. T., 2016, 37(5): 67-74.
[20] 陈云伟, 方曙. 社会网络分析方法在专利分析中的应用研究进展[J]. 图书情报工作, 2012(4): 92-97.
CHEN Y W, FANG S.Application of social network analysis (SNA) on patents networks analysis[J]. Library and information service, 2012(4): 92-97.
[21] FREEMAN L C.Centrality in social networks conceptual clarification[J]. Social networks, 1978, 1(1): 215-239.
[22] BURT R S, KILDUFF M, TASSELLI S.Social network analysis: Foundations and frontiers on advantage[J]. Annual review of psychology, 2013, 64(1): 527-547.
[23] 韩毅. 引文网络主路径的结构洞功能探索——以知识管理领域为例[J]. 图书情报工作, 2012, 56(24): 65-70.
HAN Y.Structural holes functions of main path in citation network: Taking knowledge management field as an example[J]. Library and information service, 2012, 56(24): 65-70.
[24] NEWMAN M J.A measure of betweenness centrality based on random walks[J]. Social networks, 2005, 27(1): 39-54.
[25] FREEMAN L C.A set of measures of centrality based on betweenness[J]. Sociometry, 1977, 40(1): 35-41.
[26] 赵蕴华, 张静, 李岩, 等. 基于机器学习的专利价值评估方法研究[J]. 情报科学, 2013(12): 17-20.
ZHAO Y H, ZHANG J, LI Y, et al.Study on evaluation for patent value based on machine learning[J]. Information science, 2013(12): 17-20.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}