Most Read
  • Published in last 1 year
  • In last 2 years
  • In last 3 years
  • All

Please wait a minute...
  • Select all
    |
  • SPECIAL FOCUS: DROUGHT RESISTANCE IDENTIFICATION AND GENETIC RESOURCE MINING IN WHEAT
    ZHANGYuZhou, WANGYiZhao, GAORuXi, LIUYiFan
    Scientia Agricultura Sinica. 2024, 57(9): 1633-1645. https://doi.org/10.3864/j.issn.0578-1752.2024.09.002

    Wheat is the most important cereal crop, and drought is the most significant abiotic stress factor that severely affects wheat growth and development. Plant root system, as a primary organ for crops to acquire water and nutrients, directly determines the efficiency of soil water utilization. In recent years, increasing evidence has shown that plant root system architecture (RSA) plays an important role in plant tolerance to drought stress. This review summarizes the current research progress on the regulation of wheat drought tolerance determined by RSA. First, we present how root tropism especially root gravitropism shapes the RSA, summarize the relevant genes and molecular regulatory mechanism involved in root gravitropic growth, and explain how the root tropism-regulated RSA is implicated in wheat adaptation to drought stress. In addition to root tropic growth, the root development also participates in the RSA formation and the plant adaptability to drought stress. Therefore, this review further summarizes how wheat regulates root development to alter its root system morphology (including increasing root length, modifying lateral root number and root hair density, etc.), thereby enhancing its water acqusition from the soil and its adaption to drought environment. The identified genes involved in wheat root development under drought stress conditions are also systematically summarized. Furthermore, as the underground part of plants, the revelation of RSA has always been a challenging task, which hinders our understanding of the relationship between RSA and plant drought tolerance. Therefore, this review also summarized the available techniques used to analyze the RSA at two- and three-dimension levels. These techniques can measure and analyze wheat root length, density, growth direction, and morphology parameters, laying technical support for an insightful understanding of the relationship between wheat RSA and drought resistance. Finally, we discuss the prospect of the improvement of RSA in breeding wheat drought-resistant varieties, as well as provide an outlook for how to identify genes regulating wheat RSA and pinpoint their regulatory mechanism. In summary, the relationship between wheat RSA and drought resistant is closely associated. The continuous development of sequencing techniques, along with the deepening research on the regulatory mechanism of wheat RSA, will provide new means and strategies for the further breeding of drought-tolerance wheat varieties.

  • SPECIAL FOCUS: SEED GERMINATION AND PRE-HARVEST SPROUTING
    DONG HuiXue, CHEN Qian, GUO XiaoJiang, WANG JiRui
    Scientia Agricultura Sinica. 2024, 57(7): 1237-1254. https://doi.org/10.3864/j.issn.0578-1752.2024.07.003

    Pre-harvest sprouting (PHS) refers to the germination of cereal crops on the spike in high humidity conditions before grain harvest. Wheat PHS is a significant problem that affects both the yield and quality of wheat. Seed dormancy level is a major factor influencing the resistance of wheat PHS, and domesticated crops often exhibit reduced seed dormancy levels, making cultivated wheat more prone to PHS compared to its wild ancestors. Wheat PHS is mainly regulated by external environmental factors such as temperature and humidity, as well as internal plant hormones (GAs, ABA, IAA, MeJA, ET, BR). Researchers have identified a range of materials resistant to PHS, cloned key genes regulating PHS resistance, such as PM19, MFT, MKK3, Myb10-3D, Vp1. New wheat materials resistant to PHS have been successfully developed through molecular marker-assisted selection, artificial synthesis of wheat, and CRISPR/Cas9 gene editing technology. This article reviews the genetic mechanism of PHS resistance in wheat and the latest progress in PHS resistance breeding research. In the future, it is necessary to continue exploring key genes related to PHS resistance, and employ biotechnological breeding methods to cultivate new PHS-resistant wheat varieties.

  • SPECIAL FOCUS: DROUGHT RESISTANCE IDENTIFICATION AND GENETIC RESOURCE MINING IN WHEAT
    ZHANGYing, SHITingRui, CAORui, PANWenQiu, SONGWeiNing, WANGLi, NIEXiaoJun
    Scientia Agricultura Sinica. 2024, 57(9): 1658-1673. https://doi.org/10.3864/j.issn.0578-1752.2024.09.004

    【Objective】Drought is one of the most destructive environmental stresses limiting wheat production. The novel germplasm with excellent drought tolerance as well as their candidate loci were identified and characterized to enrich the genetic basis of drought tolerance and lay a material foundation for wheat genetic improvement in China. 【Method】In this study, the drought tolerance of 198 wheat accessions introduced from International Dry Area Agriculture Research (ICARDA) were investigated at seedling stage through hydroponic method with PEG6000 simulating drought. Drought tolerance index (DTI) was calculated using the shoot fresh weight, root fresh weight, total biomass and root-shoot ratio, respectively. Genome-wide association analysis was performed using 660K SNP array genotyping to obtain the SNP loci and chromosome regions associating with drought tolerance index. Combined with the expression patterns in root and other tissues, the potential candidate genes were identified, and then they were further verified by qRT-PCR approach with the most drought-tolerant accession IR214 and the most drought-sensitive accession IR36 as materials. Finally, the excellent haplotypes of key candidate genes were analyzed. 【Result】Compared to normal control condition, the growth and development of wheat were significantly impaired under drought treatment. There were also significant phenotypic variations among different accessions with all of the four traits displayed normal distribution. The coefficient of variation ranged from 0.363 to 0.760 with genetic diversity from 0.310 to 0.400. Using the weighted membership function value (D value), the drought tolerance of these accessions was evaluated. Results showed that accession IR214 had the highest D value with 0.851, followed by IR92, IR213, IR235, and IR218, which could be considered as the novel excellent drought-tolerance germplasm. Furthermore, through genome-wide association study (GWAS) analysis, a total of 102 loci were significantly associated with the DTI values based on these four traits, with the phenotypic variation explained value (PVE) from 1.07% to 38.70%, of which 60 loci were associated with above-ground fresh weight, 1 locus associated with underground fresh weight, 36 loci associated with biomass and the remaining 5 loci associated with root-shoot ratio. Then, 31 candidate genes were predicated based on genomic annotation information and LD block. Combined with the expression patterns of them in roots and other tissues, 4 candidates displaying differential expression between CK and drought conditions were obtained. Finally, the expression levels of these 4 candidates were further verified by qRT-PCR method with the most drought- tolerant accession IR214 and the most drought-sensitive accession IR36 as materials to obtain two key candidates associating with drought tolerance. Additionally, their haplotype effects were investigated. It was found that the different genotypes of AX-86174509 locus in TraesCS6A02G048600 gene showed significant differences in drought tolerance, which might be considered as a causal locus.【Conclusion】Totally, 102 loci and 2 key candidate genes (TraesCS5B02G053500 and TraesCS6A02G048600) underlying drought tolerance at seedling stage were detected in ICARDA-introduced wheat, and AX-86174509 in TraesCS6A02G048600 was a potential functional locus.

  • CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS
    CAOLiRu, YEFeiYu, KULiXia, MAChenChen, PANGYunYun, LIANGXiaoHan, ZHANGXin, LUXiaoMin
    Scientia Agricultura Sinica. 2024, 57(12): 2265-2281. https://doi.org/10.3864/j.issn.0578-1752.2024.12.001

    【Objective】 Mining the key drought-resistant genes of maize, revealing its drought-resistant molecular mechanism, and providing genetic resources and theoretical guidance for the cultivation of new drought-resistant maize varieties.【Method】Transcriptome data combined with weighted gene co-expression network (WGCNA) and screening methods for physiological and biochemical indicators of drought resistance were used to identify ZmPAL genes associated with drought resistance and rewatering. Genome-wide analysis of the genes encoding PAL was performed using bioinformatics methods. Quantitative real-time fluorescence PCR (qRT-PCR) was used to detect the expression of ZmPAL genes under drought treatment conditions, as well as the expression characteristics of ZmPAL5 among different inbred lines and the expression patterns in different tissues. Finally, genetic transformation was used to analyze the drought resistance function of ZmPAL5 in maize, and the deletion-type Arabidopsis mutant was analyzed for drought resistance with the help of CRISPR/Cas9 technology for the PAL5 homologous gene.【Result】Nineteen maize ZmPAL genes were identified, six of which were clustered on chromosome 5 and encoded proteins that were mostly hydrophilic acidic proteins and relatively evolutionarily conserved in the PAL family of genes. The promoter region of ZmPAL genes contained a large number of cis-acting elements associated with hormonal and abiotic stress responses. Six core genes were identified, four of which were significantly up-regulated for expression after drought treatment. In particular, ZmPAL5 showed an 8.57-fold increase in expression after drought stress. The expression level of ZmPAL5 was found to be significantly higher in the drought-resistant inbred line Zheng 8713 than in the drought-sensitive inbred line B73 under both drought stress and rewatering treatments. Meanwhile, ZmPAL5, a constitutively expressed gene, showed a high level of expression in young stems. Overexpressed ZmPAL5 maize grew well under drought stress, and its relative water content, lignin, chlorophyll, soluble protein, proline content, and activities of superoxide dismutase, peroxidase, catalase, and ascorbate peroxidase were 1.52, 1.49, 1.47, 1.43, 1.44, 1.41, 1.53, 1.41, and 1.35 times, but the malondialdehyde content was 0.65 times that of the wild type. The PAL5-deficient Arabidopsis mutant was sensitive to drought. Under drought stress, its physiological and biochemical indexes showed the opposite trend to those of overexpression of ZmPAL5 maize. 【Conclusion】 Six core genes (ZmPAL3, ZmPAL5, ZmPAL6, ZmPAL8, ZmPAL11, and ZmPAL13) were screened in response to drought stress, in which the expression of ZmPAL5 was positively correlated with drought resistance. ZmPAL5 positively regulated the drought resistance and resilience of the plant by influencing the content of osmotically regulated substances and antioxidant enzyme activities.

  • SPECIAL FOCUS: SOYBEAN DISEASE RESISTANCE, YIELD AND QUALITY CORRELATION
    ZHANYuHang, WANGJie, LIYongGuang, HANYingPeng
    Scientia Agricultura Sinica. 2024, 57(11): 2061-2064. https://doi.org/10.3864/j.issn.0578-1752.2024.11.001
  • SPECIAL FOCUS: DROUGHT RESISTANCE IDENTIFICATION AND GENETIC RESOURCE MINING IN WHEAT
    MAOHuDe, DULinYing, KANGZhenSheng
    Scientia Agricultura Sinica. 2024, 57(9): 1629-1632. https://doi.org/10.3864/j.issn.0578-1752.2024.09.001
  • SPECIAL FOCUS: SEED GERMINATION AND PRE-HARVEST SPROUTING
    CHEN BingXian, ZHANG Qi, DAI ZhangYan, ZHOU Xu, LIU Jun
    Scientia Agricultura Sinica. 2024, 57(7): 1220-1236. https://doi.org/10.3864/j.issn.0578-1752.2024.07.002

    【Objective】The study investigated the impact of salicylic acid (SA) priming on the germination vigor and physiological response of rice seeds under low temperatures. It aimed to reveal the expression patterns of genes related to abscisic acid (ABA) and gibberellin (GA) metabolic pathways as well as cell wall relaxation genes by SA priming. This research provided a theoretical basis for the study of rice seed germination at low temperatures.【Method】Using indica three-line hybrid rice Taifengyou 208 seeds as materials, the effects of SA on seed germination vigor and physiology responses under low temperature were analyzed through seed priming treatment, and the expression patterns of genes related to ABA, GA and expansin in response to SA were analyzed by qRT-PCR.【Result】Low temperature (15 ℃) significantly delayed the germination process of rice seeds. In seeds germinated at low temperatures for one day, the endogenous SA concentration was 1.7 times higher than that at normal temperatures (28 ℃). However, for five-day-old seedlings, the SA concentration under low temperature was only 0.6% of that at normal temperatures. SA could effectively enhanced germination vigor of seeds at low temperature, with the most significant effects observed at 2 000 μmol·L-1 SA. This concentration significantly increased the germination index, vigor index, shoot length, root length, fresh weight, and dry weight of seeds under low temperature conditions. Notably, the vigor index was three times that of non-primed seeds (CK1) and two times that of water-primed seeds (CK2). In terms of physiological indexes, SA priming increased the contents of soluble sugar, proline and active oxygen, enhanced the activities of total amylase, β-amylase, superoxide dismutase (SOD) and catalase (CAT), and decreased the content of malondialdehyde (MDA). Compared with CK1, 2 000 μmol·L-1 SA decreased the ABA content by 79%, and increased the IAA and GA1 contents by 32.2% and 2.66 times, respectively. In terms of gene expression, the expression levels of ABA synthesizing genes OsNCED2 and OsNCED3 were decreased by 94.26% and 90.24% compared with CK1 in seeds primed by 2 000 μmol·L-1 SA, respectively, whereas the expression levels of ABA decomposing genes OsABA8’ox2 and OsABA8’ox3 were 5.9 and 3.9 times higher than that of CK1, respectively. Compared with CK1, SA priming significantly upregulated the expression of GA synthesizing genes OsCPS1, OsKAO and OsGA20ox1, while it significantly downregulated the expression of GA decomposing genes OsGA2ox2 and OsGA2ox6. In several candidate genes encoding cell wall relaxation protein, e.t. expansin, all but OsEXPB11 were significantly upregulated to some extent by priming. Compared with CK1, 2 000 μmol·L-1 SA increased the expression levels of OsEXPA2, OsEXPB4 and OsEXPB6 to 12.2, 5.9 and 6.1 times, respectively.【Conclusion】SA priming can significantly alleviate the impact of low temperatures on rice seed germination and seedling growth, which is likely due to SA enhancing the activity of antioxidant enzymes such as SOD and CAT, reducing the production of MDA, and increasing the content of soluble sugars and proline, thereby strengthening the tolerance of seeds and seedlings to low temperatures. On the other hand, SA priming decreases endogenous ABA content, increases GA1 content, enhances the activities of total amylase and β-amylase, and promotes the expression of genes related to cell wall relaxation, thus facilitating seed germination and seedling growth at low temperature.

  • CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS
    LIShengYou, WANGChangLing, YANChunJuan, ZHANGLiJun, SUNXuGang, CAOYongQiang, WANGWenBin, SONGShuHong
    Scientia Agricultura Sinica. 2024, 57(10): 1857-1869. https://doi.org/10.3864/j.issn.0578-1752.2024.10.002

    【Objective】 In order to provide theoretical basis for molecular breeding of soybean drought resistance, the different evaluation indexes of drought resistance were comprehensively used to screen soybean germplasm with drought-resistance, and the candidate drought-tolerant genes were identified. 【Method】 In 2018, 2019, 2020 and 2021, a total of 188 soybean germplasm were used to determine pod number per plant, biomass per plant and yield per plant under well-watered and drought stressed conditions. Drought resistance index (DI), improved drought resistance index (IDI), weighted drought resistance coefficient (WDC) and weighted drought resistance index (WDI) were used to identify drought resistance of soybean germplasm. The single nucleotide polymorphisms (SNP) loci significantly associated with these parameters were detected by genome-wide association study (GWAS), and the candidate genes for drought resistance were screened by RNA-seq and qRT-PCR analysis of soybean seedling leaves under drought stress. 【Result】 The DI, IDI, WDC and WDI of 188 soybean germplasm varied widely, and five classification criteria for each drought resistance parameter were determined by hierarchical classification method. Among them, Liaodou 15, Liaodou 69, Liaodou 14, Jinzhangzi Huangdou, Zhonghuang 606, Kexin 3 and Koreane 4 were identified as first-grade drought resistant by all evaluation methods. By using GWAS for DI, IDI, WDC and WDI, a total of 15 significantly SNP loci were detected under multiple environments, and the contribution rate of these loci to phenotypic variation ranged from 12.46% to 25.60%. There are 226 annotated genes within 200 kb intervals of upstream and downstream for the significant SNP loci. According to RNA-seq and qRT-PCR analysis of drought-resistant cultivar Liaodou 14 and drought-sensitive cultivar Liaodou 21 under drought stress, a total of 32 annotated genes were significantly differentially expressed by drought stress. Among them, eight genes including Glyma.02G182900, Glyma.04G012400, Glyma.06G258900, Glyma.15G100900, Glyma.01G172600, Glyma.04G012300, Glyma.01G172200 and Glyma.04G010300, encodes calcium-dependent protein kinase, universal stress protein A-like protein, G-type lectin S-receptor-like serine/threonine-protein kinase, protein phosphatase 2C, isoflavone reductase, isoflavone reductase homolog, auxin-like protein, and bZIP transcription factor, respectively. 【Conclusion】 Seven germplasm were identified from 188 soybean germplasm by comprehensive application of different drought tolerance parameters. A total of 15 SNP loci significantly associated with drought tolerance parameters were identified by GWAS, and eight candidate genes were identified.

  • CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS
    XUNa, TANGYing, XUZhengJin, SUNJian, XUQuan
    Scientia Agricultura Sinica. 2024, 57(8): 1417-1429. https://doi.org/10.3864/j.issn.0578-1752.2024.08.001

    【Objective】The F1 hybrid sterility between XI/indica and GJ/japonica severely hinders the utilization of hybrid advantage between subspecies. Exploring the genetic mechanism and identifying new regulatory genes for XI/GJ hybrid sterility will provide theoretical basis for promoting genetic improvement of XI/GJ hybrid seed setting rate. 【Method】A series of stable genetic recombination inbred lines (RILs) containing 95 plant lines were derived from the cross between XI variety Habataki and GJ variety Sasanishiki after 10 generations inbred using single seed descent method. High throughput sequencing was performed on both parents and RILs on the Illumina platform, and the distribution of Habataki pedigree in RILs was analyzed at the whole genome level. The segregation distortion regions were identified, and hybrid sterile related gene loci were screened within the segregation distortion regions, then identified candidate genes through sequence alignment comparison. The targeted gene was knockout to verify the function using CRISPR gene editing technology. 【Result】The hybrid F1 plants derived from the cross between Habataki and Sasanishiki showed significant heterosis in panicles, grains per panicle, and thousand grain weight, but its seed setting rate significantly decreased. I2-KI microscopy revealed a significant decrease in F1 pollen fertility. High throughput sequencing of the entire genome of RILs revealed significant segregation distortion on Chr.1, Chr.3, Chr.5, Chr.6, Chr.7, and Chr.12, indicating that the genotype in this region tends towards the Habataki. Sequence alignment comparison revealed that Sc, S5, and HSA1 are target genes for the segregation distortion on Chr.3, Chr.6, and Chr.12. The CRISPR gene editing mutants with a knock-out Sc-Haba-3 allele in Habataki successfully improved the pollen fertility and seed setting rate of F1 hybrid with Sasanishiki. A complex structural variation was found between Sasanishiki and Habataki in the segregation distortion of Chr.1. A 24.7 kb segment containing 4 predicted genes in the Sasanishiki genome was replaced by a 64.8 kb segment containing 10 predicted genes in Habataki, the structural variation may involve in controlling the hybrid sterility of XI and GJ cross. 【Conclusion】This study detected multiple XI/GJ hybrid infertility related loci, and successfully improved F1 fertility by using CRISPR gene editing to knock out multiple copies of Sc in Habataki, locking in the target gene in the Sd region of Chr.1.

  • CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS
    BAIBingNan, QIAODan, GEQun, LUANYuJuan, LIUXiaoFang, LUQuanWei, NIUHao, GONGJuWu, GONGWanKui, ELAMEERELSAMMAN, YANHaoLiang, LIJunWen, LIUAiYing, SHIYuZhen, WANGHaiZe, YUANYouLu
    Scientia Agricultura Sinica. 2024, 57(15): 2901-2913. https://doi.org/10.3864/j.issn.0578-1752.2024.15.001

    Objective】Exploring the genetic loci and related genes that control cottonseed size traits to lay a foundation for subsequent study on the molecular mechanism cottonseed size formation. 【Method】The upland cotton recombinant inbred line (RIL) population composed of 300 lines was used as the research material. Seven phenotypic traits including cottonseed index (SI), seed length-cutting acreage (SLA), seed length-cutting perimeter (SLP), seed length (SL), seed width (SW), length-width ratio (LWR) and seed roundness (SR) were evaluated in four environments. The RIL population was genotyped by liquid phase chip strategy. The high-quality single nucleotide polymorphism (SNP) markers and phenotypic data were subjected to perform genome-wide association study (GWAS), and quantitative trait nucleotides (QTNs) associated with cottonseed size-related traits were mined. The genetic effects of QTNs were analyzed to identify candidate genes. 【Result】Seven cottonseed size-related traits showed a continuous normal distribution in four environments, which expressed a sizable phenotypic variation. The coefficient of variation ranged from 1.82% to 10.70%. The influencing effect on trait formation were basically as genotype>environment>genotype × environment, indicating suitability for GWAS analysis of these results. Correlation analysis showed that the seed index was significantly correlated with SLA, SLP, SL and SW, and LWR was significantly correlated with SR, indicating the possible existence of pleiotropic loci. GWAS was performed using the 3VmrMLM model, and a total of 47 QTNs were associated with these seven traits. A total of 11 QTNs were associated on chromosome A07, of which three physical loci in the region of 71.99-72.87 Mb, A07:71993462, A07:72067994 and A07:72198802 were very close and simultaneously associated with SI, SLA, SLP, SL and SW in four environments. The average value of R2 between markers was>0.8 (P<0.001), showing a large linkage disequilibrium. Genetic effect analysis showed that there were two haplotypes in this region. Among these cottonseed size relating traits, haplotype Ⅱ and haplotype I were significantly different, indicating that these loci directly affected cottonseed size traits and could be used for molecular marker-assisted selection. The expression patterns of the genes in the interval were analyzed using TM-1 transcriptome data. The results revealed that Gh_A07G1767 was preferentially expressed and Gh_A07G1766 specifically expressed at the stage of cottonseed development. These results speculated that these genes may play an important role in the growth and development of cottonseed.【Conclusion】47 QTNs were identified, and two candidate genes related to cottonseed development were screened.

  • PLANT PROTECTION
    WANG ChengZe, ZHANG Yan, FU Wei, JIA JingZhe, DONG JinGao, SHEN Shen, HAO ZhiMin
    Scientia Agricultura Sinica. 2024, 57(7): 1308-1318. https://doi.org/10.3864/j.issn.0578-1752.2024.07.008

    【Objective】The objective of this study is to perform the genome-wide identification of the maize ACO (1-aminocyclopropane- 1-carboxylate oxidase) gene family, analyze its expression patterns in different organs and developmental stages of maize, as well as in response to exogenous hormones and pathogen infection, and to lay the foundation for clarifying the function of the maize ACO gene family.【Method】Using bioinformatics methods, the ACO was identified in the genome of maize B73 inbred line, and its gene structure, protein physicochemical properties, phylogenetic relationships among family members, and conserved motifs were analyzed. The expression patterns of the ZmACO gene family were analyzed using real-time fluorescence quantitative PCR (qRT-PCR) technology.【Result】Except for ZmACO11, all members of the ZmACO family have Fe2+ binding sites and substrate ascorbic acid binding sites. The phylogenetic tree showed that ZmACO2 and ScACO are in the same branch and have a close genetic relationship, with a Bootstrap value of 98. The gene expression analysis indicated that ZmACO2, 5, 9, 15, 20 and 35 were actively expressed at various developmental stages and exhibited dominant expression in leaves, so the six genes mentioned above were selected for the next step of testing. Spraying ethephon resulted in fluctuations in the expression of all six genes mentioned above, the expression level of ZmACO2 was significantly affected, with a variation multiple of about 8 times. The expression levels of these six genes fluctuated within 0-24 h of ethephon treatment. But after 24 h of treatment, all gene expression levels were close to 0. After salicylic acid treatment, the expression level of ZmACO5 was significantly affected, with a variation multiple of about 2 times. The expression levels of other genes were close to 0 at 24 h after treatment. The expression levels of ZmACO9, 35 fluctuated between 3 to 12 h, and the expression levels of ZmACO2, 15, 20 showed a downward trend. In response to biological stress, the expression levels of ZmACO5, 9 showed the greatest changes after inoculation with the Setosphaeria turcica, and on the 10th day after inoculation, the expression levels of these two genes increased by 50 and 60 times, respectively, compared to the control group. After inoculation with the Cochlibolus heterostrophus, the expression level of ZmACO5 changed significantly, with a variation multiple of 40-90 times. After inoculation with Rhizoctonia solani, the expression levels of ZmACO5, 35 showed the greatest changes, reaching 200 times on the 3rd day of inoculation.【Conclusion】The expression changes of ZmACO2, 5, 20 and 35 are most active during the growth and development of maize; The application of exogenous ethephon and salicylic acid can significantly affect the expression level of ZmACO genes. The expression level of ZmACO genes significantly changes after bacterial infection in maize, which is closely related to the response to biological stress.

  • CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS
    QIXiaoLei, WANGJun, LÜGuangDe, MUQiuHuan, MIYong, SUNYingYing, YINXunDong, QIANZhaoGuo, WANGRuiXia, WUKe
    Scientia Agricultura Sinica. 2024, 57(22): 4391-4401. https://doi.org/10.3864/j.issn.0578-1752.2024.22.001

    【Objective】Taikemai33, derived from a cross between Zhengmai366 and Huaiyin9908, is a new released wheat cultivar with high quality, high yield, and excellent disease resistance, which has a broad genetic base, and a high potential for application in wheat production. The objective of this study is to dissect the genetic composition of Taikemai33 to provide information for parental selection to use this cultivar to develop more new wheat cultivars. 【Method】Taikemai33 and its pedigree parents including Zhengmai366, Huaiyin9908, Yumai47, PH82-2-2, Yumai13, Yumai 2 hao, Bainong3217, Yanda24, Xiannong39, Fengchan 3 hao and Funo were screened using the 55K wheat SNP chip to dissect the genomic composition of Taikemai33 to evaluate the genetic contributions of each parental line to Taikemai33. 【Result】The similarity coefficient between Taikemai33 and its pedigree parents ranged from 0.72 to 0.93, and the genetic composition of Taikemai33 was highly similar to Zhengmai366, the pedigree mother parent, with a genetic similarity coefficient of 0.93. SNP marker analysis showed that the pedigree parents contributed different proportion to the genome of Taikemai33, with the pedigree mother contributed 66.57%, whereas the pedigree father contributed 33.43%, indicating that Taikemai 33 inherits more genetic materials from the maternal lineage. Furthermore, the pedigree mother contributed 71.0%, 85.0% and 49.4% to subgenome A, B and D of Taikeimai33, whereas those were 29.0%, 15.0% and 50.6% contributed by the pedigree father. For each chromosome, the pedigree mother contributed more on chromosome 1A, 2A, 3A, 4A, 7A, 1B to 7B, 1D and 2D, whereas the pedigree father contributed more on chromosome 5A, 4D, 6D and 7D. The contributions of the pedigree parents on 6A, 3D and 5D were equal. Taikemai33 genotype map showed that the contribution loci of the pedigree mother were distributed in clusters on chromosome 1A, 5A, 7A, 2B, 7B, 2D, with those from the pedigree father were on chromosome 4A, 5A, 6D, 7D. Interestingly, among the polymorphic SNP loci, between Zhenmai366 and Huaiyin9908, Taikemai33 showed 109 loci that were absent in both parents, distributing on 19 chromosomes except 1A and 6A. Chromosome 4A, 2B, 6B and 7D of Taikemai33 confer most of the polymorphic SNPs in clusters with cluster number of 10, 9, 11, and 9. 【Conclusion】We constructed the genotype map and dissected the genetic composition of Taikemai33, determined the loci contributed by the pedigree parents and identified that Taikemai33 inherited more genetic materials from the pedigree mother and conferring some specific loci different with the pedigree parents.

  • CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS
    HEYongQiang, ZHANGJinKui, XUJinSong, DINGXiaoYu, CHENGYong, XUBenBo, ZHANGXueKun
    Scientia Agricultura Sinica. 2024, 57(8): 1444-1454. https://doi.org/10.3864/j.issn.0578-1752.2024.08.003

    【Objective】As a new Plant growth regulator, 14-hydroxylated brassinosteroids(14-HBR) increase biological activity by 50% than the traditional Brassicin sterols, while the relation effect of 14-HBR on rapeseed growth, yield and seed coating pesticide were not clear. 【Method】In this study, 14-HBR regulator and pesticide are used to treat the seeds in mid-duration winter rapeseed variety (Yangguang 2009) and early-duration variety (Yangguang 131), investigated germination, seedling growth, insect resistance, and yield, to reveal the interaction effects of environment, variety genotype and 14-HBR. 【Result】0.0075 and 0.015 mg·L-1 14-HBR treated seed increased significantly germination potential in medium duration rapeseed, but decreased germination potential and germination rate significantly as mixed with pesticide. 14-HBR treated seed had no significant effect on germination rate and germination potential in short duration rapeseed. The 14-HBR showed better biological activity in seedling growth and yield than that of Brassinolide, 0.0075 and 0.015 mg·L-1Brassinolide increased by an average of 5.19% and 8.15%, 0.0075 and 0.015 mg·L-1 14-HBR increased by an average of 11.98% and 5.50%, respectively. 14-HBR mixed with seed pesticide of Clothianidin and Thiamethoxam, also increased seedlings weight and yield. The yield of Thiamethoxam and Clothianidin seed treatments increased by 4.7% and 4.6% independently. The yield of mixed with 0.0075 and 0.015 mg·L-1 14-HBR to Clothianidin increased 6.8% and 3.3%, mixed to Thiamethoxam increased by 3.5% and 8.2%, respectively. 14-HBR did not affect insecticidal activity of Thiamethoxam and Clothianidin to peach bud nymphs and phyllotreta striolata fabricius. 【Conclusion】The study revealed seed treatment with 14-HBR regulator has a positive effect on early growth of rapeseed and increased yield of rapeseed significantly, interacted with planting environment, pesticide type and varieties genotype as traditional regulators, it is necessary to optimize seed treatment technology of 14-HBR regulator to obtain higher harvest yield.

  • SPECIAL FOCUS: MINING AND UTILIZATION OF CROP DISEASE RESISTANCE AND INSECT-RELATED GENES
    HE NiQing, LIN ShaoJun, CHENG ZhaoPing, YANG DeWei
    Scientia Agricultura Sinica. 2024, 57(23): 4589-4592. https://doi.org/10.3864/j.issn.0578-1752.2024.23.001
  • CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS
    LEIMengLin, LIUXia, WANGYanZhen, CUIGuoQing, MUZhiXin, LIULongLong, LIXin, LULaHu, LIXiaoLi, ZHANGXiaoJun
    Scientia Agricultura Sinica. 2024, 57(10): 1845-1856. https://doi.org/10.3864/j.issn.0578-1752.2024.10.001

    【Objective】 Analyzing the evolutionary patterns of genetic diversity of wheat germplasm resources, providing richer and more diverse original parental materials for parental selection and variety selection in wheat breeding in Shanxi Province.【Method】 Using 323 landraces and 105 cultivated varieties as natural populations, a 55K SNP chip was used to perform whole genome scanning on 428 natural populations, analyzing genetic diversity, genetic structure, principal components, genetic clustering, and phylogenetic relationships among varieties. 【Result】 The distribution of SNP loci on 21 chromosomes ranged from 329 to 1 639, with an average of 1 152. The distribution range of 7 partially homologous groups is 2 154-3 852, with an average of approximately 3 456. The distribution pattern of the genome is: B genome>A genome>D genome. Genomic annotation polymorphism markers have the highest distribution among gene regions, accounting for about 50%. Analysis shows that SNP loci cover 21 chromosomes, 7 homologous groups and 3 genomes, but their distribution varies, with a polymorphism rate of 45.60%. The average observed heterozygosity of the entire population (0.0185) was lower than the expected heterozygosity (0.4992). The changes in the average shannon wiener index and polymorphism information content of the entire natural population were not significant. Comparing the diversity parameters of natural populations, it was found that the genetic diversity of the population is not high, the genetic diversity of cultivated varieties is slightly higher than that landraces. The population structure analysis of natural populations divides the population into two major groups. Group I has 307 materials, mainly landraces. Group Ⅱ has 121 materials, mainly cultivated varieties. The natural groups were divided into five groups by both principal component and cluster analysis. The average genetic distance between the varieties in group I is 0.21831, with a range of 0.00127-0.72461. The average genetic distance between varieties in group Ⅱ is 0.14619, with a range of 0.00038-0.76489. The varieties in group Ⅲ the average genetic distance between the varieties of group Ⅳ is 0.16521, with a range of 0.00049-0.43033. The average genetic distance between varieties of group Ⅳ is 0.17643, with a range of 0.00118-0.60496. The average genetic distance between varieties of group V is 0.12039, with a range of 0.00042-0.37032. It can be seen that the variation of genetic distance between wheat varieties is large in Shanxi Province. However, the average genetic distance value is low, the clustering classification differentiation is obvious. The genetic relationship between varieties in the middle of the group is relatively close. Comparison shows that the average genetic distance of group I and group Ⅳ is higher than that of group Ⅱ, group Ⅲ and group V. The genetic distance variation of group I and group Ⅳ is higher than that of group Ⅲ and group V. It can be seen that the genetic distance of cultivated varieties is generally greater than that of landraces.【Conclusion】 The 55K SNP chip was used to analyze the genetic diversity of Shanxi winter wheat germplasm resources, clarifying the distribution characteristics of genetic diversity at the genomic level between Shanxi wheat cultivated varieties and landraces. The introduction of exogenous genes into cultivated varieties is beneficial for improving genetic diversity, while the genetic diversity of landraces is relatively low. At the same time, the genetic relationships of very few varieties are polarized, so it should be rationally used differently in subsequent utilization.

  • SPECIAL FOCUS: DROUGHT RESISTANCE IDENTIFICATION AND GENETIC RESOURCE MINING IN WHEAT
    ZHOUQuan, LUQiuMei, ZHAOZhangChen, WUChenRan, FUXiaoGe, ZHAOYuJiao, HANYong, LINHuaiLong, CHENWeiLin, MOULiMing, LIXingMao, WANGChangHai, HUYinGang, CHENLiang
    Scientia Agricultura Sinica. 2024, 57(9): 1646-1657. https://doi.org/10.3864/j.issn.0578-1752.2024.09.003

    【Objective】Drought is a major environmental factor limiting global wheat production, and breeding drought-tolerant varieties is a key challenge faced by wheat breeders worldwide. Spring wheat, which has a short growth period, plays a vital role for national food security and planting structure, therefore, it is of great importance to identify and select drought tolerance of spring wheat varieties for breeding of high-yielding and drought-tolerant wheat.【Method】In this study, 244 spring wheat varieties (lines) from 10 different regions were used to assess the drought tolerance of spring wheat varieties during the seedling stage, this study used the controlled water content method to impose drought stress during the seedling stage, 5 seedlings with uniform and consistent growth were selected during the trefoil stage. Thirteen seedling stage indicators including maximum root length (MRL), first leaf length (FLL), first leaf width (FLW), coleoptile length (CL), shoot fresh weight (SFW) and root fresh weight (RFW) were measured. Comprehensive evaluation of drought resistance of various spring wheat varieties (lines) was conducted through methods such as using descriptive statistics, membership function, principal component analysis, cluster analysis, and correlation analysis. 【Result】The drought tolerance of spring wheat varieties (lines) exhibits a large variation. The coefficient of variation of the measured traits under drought treatment conditions ranges from 2.1% to 32.9%, while the coefficient of variation of the control group ranges from 1.0% to 29.3%. Compared with the control, the coleoptile length, root dry weight, fresh weight root to shoot ratio, and dry weight root to shoot ratio under drought treatment were all greater than those under the control treatment. The original 13 indexes were summarized into 5 principal components, and the contribution rate reached 79.56%, and the D value of the comprehensive drought resistance coefficient was calculated according to the characteristic vector of each principal component and the drought resistance coefficient of each trait index, then the D value was clustered and analyzed, which could be divided into 5 subgroups. Therefore, the root biomass (underground fresh weight and dry weight) was screened as an effective comprehensive index for the identification of drought resistance at the seedling stage. We conducted correlation analysis between the seedling stage drought index and the agronomic traits of maturity stage showed that the coleoptile length, first leaf length was significantly positively correlated with flag length, plant height, spike length, the number of spike and grain length. Additionally, and the seedling biomass was significantly positively correlated with thousand-grain weight.【Conclusion】Twenty-two highly drought-tolerant varieties were screened, and root biomass (both fresh and dry weight of the underground part) was identified as an effective comprehensive indicator for evaluating seedling stage drought tolerance.

  • CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS
    LUO JiangTao, ZHENG JianMin, DENG QingYan, LIU PeiXun, PU ZongJun
    Scientia Agricultura Sinica. 2024, 57(20): 3945-3956. https://doi.org/10.3864/j.issn.0578-1752.2024.20.001

    【Objective】Analyzing the yield and yield related traits of Sichuan wheat varieties from 2000 to 2020, providing reference for genetic improvement of yield in Sichuan wheat varieties. 【Method】From 2019 to 2022, a community trial design was used to measure the yield and related traits of 145 wheat varieties in Sichuan Province since 2001 to 2016, as well as 60 high-yield wheat varieties (Varieties with top yields in regional trials in Sichuan Province over the years) since 2000 to 2020. This data was used to analyze the trend of yield and yield related trait changes in Sichuan wheat cultivars cultivated from 2000 to 2020. 【Result】145 Sichuan wheat varieties from 2001 to 2016 have an average annual genetic gain of 37.20 kg·hm-2 or 0.66% in yield. Grain number per spike and effective spike number per unit area showed an increasing trend, while thousand grain weight and plant height showed a decreasing trend. Correlation analysis showed that effective spike number per unit area was positively correlated with yield. Path analysis showed that the continuous increase of effective spike number per unit area (annual increase 0.42×104/hm2 or 0.13%) was the main factor for the increase of yield potential of high-yielding varieties. The average annual yield genetic gain of 60 high-yield wheat varieties from 2000 to 2020 was 61.10 kg·hm-2 or 0.89%, the effective spike number per unit area showed an increasing trend, the plant height showed a decreasing trend, and the grain number per spike and thousand grain weight had almost no change. Correlation analysis shows that there was a significant positive correlation between yield and the number of effective ears per unit area. Path analysis showed that the continuous increase in effective spike number per unit area (with an average annual increase of 1.80×104/hm2 or 0.51%) was also a major factor in improving the yield potential of 60 high-yield wheat varieties in Sichuan from 2000 to 2020. 【Conclusion】The improvement and breeding of wheat yield heritage in Sichuan Province has made some progress, especially the improvement effect of high yield breeding is remarkable, and the yield level of wheat varieties in Sichuan Province is gradually increasing. The continuous increase in effective ears per unit area was the main factor for improving the yield potential of Sichuan wheat varieties. High grain number per spike and thousand grain weight are important foundations for high yield in Sichuan wheat, but their genetic improvement is in a bottleneck period. Increasing the effective spike number per unit area is the key to furtherly improve the yield of wheat in Sichuan.

  • SPECIAL FOCUS: SEED GERMINATION AND PRE-HARVEST SPROUTING
    LIANG WangZhuang, TANG YaNan, LIU JiaHui, GUO XiaoJiang, DONG HuiXue, QI PengFei, WANG JiRui
    Scientia Agricultura Sinica. 2024, 57(7): 1267-1280. https://doi.org/10.3864/j.issn.0578-1752.2024.07.005

    【Objective】Continuous rainy weather during the wheat harvest season can cause wheat pre-harvest sprouting (PHS) and even germination, thus impacting wheat yield and quality. Evaluating the effect of flour made by blending different proportions of sprouted wheat with regular wheat on the baking/steaming quality of flour processing products can explore the possibility of using a slight degree of sprouted wheat to examine the possibility of reducing food waste. 【Method】In this study, blends of Zhengmai 583 (Zheng 583) and Kechengmai 6 (Ke 6) wheat with 30%, 50%, and 100% sprouted wheat were prepared, respectively. The degradation of wheat flour from blended wheat was evaluated by the falling number, sedimentation value, wet/dry gluten content, dough development time, and dough stability time. The baking/steaming characteristics of bread, dumpling wrapper, Chinese steamed bread (CSB), sponge cake, noodle, and cookie made from blended wheat were evaluated by sensory scores and quality parameters. 【Result】As the proportion of sprouted wheat increased (30%, 50%, and 100%), the dough development time of Zheng 583 flour first increased and then decreased, while the dough stability time gradually reduced. However, the changes in the two parameters of Ke 6 both showed a trend of first decreasing, then increasing, and finally decreasing. The falling number, sedimentation value, wet/dry gluten content, and farinogram parameters of mixed wheat decreased in both cultivars. The specific volume of Zheng 583 CSB increased and then decreased, while the particular volume of Ke 6 CSB gradually reduced. The exact volume of the Zheng 583 sponge cake gradually increased, while the specific volume of the Ke 6 sponge cake remained unchanged. The particular volume of the bread, area of the cookies, cooking loss of the noodles, and turbidity index (A*) of the dumpling soup changed the same trend in both cultivars. Compared to the control (without sprouted wheat), the specific volume of bread decreased by 11.33% and 17.44%, the cookies area increased by 24.10% and 7.49%, the noodles cooking loss increased by 22.99% and 9.69%, and the A* value of the dumpling soup increased by 8.93% and 13.32% in Z583 and Ke 6 of 100% SW, respectively. The bread, Chinese steamed bread, the dumpling wrapper of two cultivars, and the noodles of Zheng 583 showed significant deterioration in the 30% SW gradient. The sponge cake and cookie of the two cultivars showed significant deterioration in the 50% SW gradient. The noodles of Ke 6 showed significant deterioration in the 100% SW gradient. 【Conclusion】The baking/steaming quality of bread, dumpling wrappers, Chinese steamed bread, sponge cake, noodle, and the cookie was seriously affected by PHS. The influence of PHS is different in various wheat cultivars but has the same trend. When the degree of PHS is slight, it has little effect on the baking quality of cookies and sponge cakes.

  • CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS
    LIU YiHan, MU QingShan, HE Xiang, CHEN Min, HU Jin, GUAN YaJing
    Scientia Agricultura Sinica. 2024, 57(21): 4161-4174. https://doi.org/10.3864/j.issn.0578-1752.2024.21.001

    【Objective】FWL (Fruit Weight2.2-Like) gene is a negative regulator of cell proliferation, which not only regulates plant organogenesis and organ size, but also participates in the regulation of metal ion transport accumulation and signal transduction. Analyzing of the function of OsFWL3 gene is helpful to reveal the transport mechanism of trace metal elements in crops. It provides theoretical support for reducing heavy metal accumulation and improving crop quality. 【Method】The gene information, genome structure and phylogenetic tree of OsFWLs family were analyzed by bioinformatics method, and the expression profile of OsFWL3 gene was predicted. Two OsFWL3 knockout lines were obtained using CRISPR/Cas9 gene editing technology. Then wild type and Osfwl3 mutants were treated with ZnSO4 at seedling stage and filling stage, respectively. The phenotypes of plants and grains after treatment were analyzed, and the content variation of metal elements such as Zn was determined to explore the effects of OsFWL3 on the transport and accumulation of metal ions and seed quality. 【Result】The gene function of OsFWLs family is similar to some extent. OsFWL3 gene is highly expressed in anther and panicle, indicating that it is closely related to reproductive development of rice. The number of primary branches, grian length, grain thickness and 100-grain weight of Osfwl3 mutants are significantly larger than WT. OsFWL3 affects the content and distribution of Zn and other metal ions in rice seedlings and grains. The deletion of OsFWL3 gene affects the competitive transport of Zn, Cd and Mn from underground to above-ground, lower grain to central grain and husk to brown rice. 【Conclusion】OsFWL3 gene affects the distribution of Zn and other metal ions in rice grains and plants, and it plays an important role in regulating the growth and development of rice plants and grain size.

  • SPECIAL FOCUS: SOYBEAN DISEASE RESISTANCE, YIELD AND QUALITY CORRELATION
    MIAOLong, YANGLei, XUJingHao, LINa, WANGFeiYu, QIULiJuan, WANGXiaoBo
    Scientia Agricultura Sinica. 2024, 57(11): 2092-2101. https://doi.org/10.3864/j.issn.0578-1752.2024.11.004

    【Objective】An accurate and rapid indoor evaluation system was established by using soybeans with different resistance levels to Phomopsis seed decay as test materials. And then 170 soybean germplasm accessions were employed to screened out disease-resistant varieties, so as to provide methods and material basis for high-throughput assessment of Phomopsis seed decay in soybean and cultivation of resistant varieties.【Method】In terms of establishing a reliable evaluation method for Phomopsis seed decay, Qihuang 34, Williams, Zhongzuo 09-560, z13-631-2, ZDD26268, Chenxiqingpidou 1 and Tongxianhuangdou were selected as experimental materials. For each soybean accession, the seeds with uniform size and undamaged seed coat were germinated in the dark after disinfection. At different germination stages, the pathogen of Phomopsis seed decay was inoculated for 24 h, 48 h, 72 h and 96 h. The mycelium coverage rate and seed decay rate of seed surface under different infection time were counted to determine the optimal identification period for evaluating Phomopsis seed decay in soybean. Then, the resistance of 170 different soybean germplasms in natural population was identified by using the coverage rate of mycelium on the surface of seeds and the decay rate of seeds as evaluation indexes. The high disease resistance varieties were screened based on 5 disease resistance levels.【Result】The soybean accessions showed the most significant differences in disease resistance levels after 96 h of germination when mycelium coverage rate and seed decay rate of soybean surface were used as evaluation indexes. Further comparison of the incidence of 24 h, 48 h, 72 h and 96 h after infection showed that the difference in disease resistance between different varieties after infection for 72 h was the most obvious. Therefore, it was the most suitable period, 72 h of infection at the bud stage after 96 h of germination, for evaluating the resistance level of different soybean varieties to Phomopsis seed decay. The resistance of 170 soybean varieties to Phomopsis seed decay was identified and classified into five disease resistance grades, namely, high resistance, medium resistance, medium susceptibility, susceptibility and high susceptibility. Among them, there were 30 varieties of grade I (high resistance to disease), 51 varieties of grade Ⅱ (medium resistance to disease), 71 varieties of grade Ⅲ (medium disease susceptibility), 4 varieties of grade Ⅳ (disease susceptibility) and 14 varieties of grade V (high disease susceptibility), idicating that there are extensive variations in the resistance to Phomopsis seed decay of soybean germplasm resources in China.【Conclusion】In this study, the most optimum stage of disease identification was considered as soybean seeds after 96 h germination to infect the Phomopsis longicolla for 72 h. After that, the mycelium coverage rate and seed decay rate of soybean surface were counted as evaluation parameters. The evaluation system has high accuracy and reliability, which can provide an effective method for high-throughput identification of different varieties in the laboratory. And 30 highly resistant varieties were further screened to provide a material basis for the breeding of resistant varieties.

  • TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY
    TIANLongBing, SHENZhaoYin, ZHAOXiaoTian, ZHANGFang, HOUWenFeng, GAOQiang, WANGYin
    Scientia Agricultura Sinica. 2024, 57(21): 4221-4237. https://doi.org/10.3864/j.issn.0578-1752.2024.21.005

    【Objective】Reasonably increasing planting density combined with appropriate nitrogen (N) application rate is an important technical approach for increasing maize yield and resource use efficiency. Understanding the interactive effects of planting density and N rate on maize growth, evapotranspiration (ET) and water use efficiency (WUE) during the growing season, could provide a basis for improving its use efficiency when increasing planting density and controlling N input in maize production. 【Method】Field experiments were conducted during 2022 to 2023 in Jilin Province. Two maize cultivars, Liangyu 99 (LY99) and Demeiya 3 (DMY3), were used in this study. Three planting densities of 50 000, 70 000 and 90 000 plants/hm2 and four N application rates of 0, 100, 200 and 300 kg N·hm-2 were designed to investigate the effects of planting density and N application rate on grain yield and water productivity of different maize cultivars, as well as the dry matter (DM), soil water content, ET and WUE at various growth stages. 【Result】Planting density significantly affected DM and grain yield of maize, but the response trends varied between cultivars. Grain yields of LY99 with 70 000 plants/hm2 was 11.1% and 18.3% higher than that with 50 000 and 90 000 plants/hm2, respectively. The average yield of DMY3 planted with 70 000 plants/hm2 and 90 000 plants/hm2 was 10.5% and 9.3% higher than that of 50 000 plants/hm2, respectively. Nitrogen fertilization significantly increased DM and grain yield of maize, and also showed significant interactive effects with cultivar or planting density. Compared with N0, grain yields of LY99 were increased by 38.0% to 60.7% under N1, and the yield increases for DMY3 were 24.4% to 38.2%. Notably, the yield responses to N rates were more pronounced for LY99 compared with DMY3. For both cultivars, the yield differences between low N rate and high N rate enlarged with increasing planting density, with LY99 showing a more distinct performance. The water consumption and utilization of maize plants were also significantly affected by planting density, N rate and their interaction. During the growing season, the total ET of DMY3 continually increased with increasing density, while that of LY99 showed the highest values with 70 000 plants/hm2 among different densities. In each density condition, the ET of both cultivars increased with increasing N application rates. The WUE of maize plants showed complex responses to planting density and N rate at different growth stages, due to the varied annual precipitation and distribution patterns. The average increase of water productivity of LY99 under planting 50 000 and 70 000 plants/hm2 was 8.6% and 10.4% compared with 90 000 plants/hm2 respectively. DMY3 had the highest water productivity when planting 70 000 plants/hm2, which increased by 5.8% and 5.3% compared with 50 000 and 90 000 plants/hm2, respectively. The water productivity showed different responses to N rate among the three densities. In general, the difference of nitrogen application under low density was small, but it increased significantly under medium and high density. Compared wtih DMY3, LY99 showed higher increases for water productivity when N fertilizer was applied under medium and high density conditions. The correlation analysis showed that interactive effects of planting density and N rate significantly affected maize yield and water productivity by influencing the water utilization at various growth stages. 【Conclusion】Planting density and N rate had significant interactive effects on maize yield and water utilization in the rain-fed region of Northeast China. The two maize cultivars used in this study could obtain high grain yield and water productivity under a moderately higher density of 70 000 plants/hm2 combined with 200 kg N·hm-2 rate.

  • SPECIAL FOCUS: SOYBEAN DISEASE RESISTANCE, YIELD AND QUALITY CORRELATION
    ZHANGYuMei, DINGWenTao, LANXinLong, LIQingHua, HURunFang, GUONa, LINGuoQiang, ZHAOJinMing
    Scientia Agricultura Sinica. 2024, 57(11): 2079-2091. https://doi.org/10.3864/j.issn.0578-1752.2024.11.003

    【Objective】Soluble sugar content is one of the important quality traits of vegetable soybean. The genetic variation and genetic mechanism of soluble sugar content in fresh soybean seeds were studied to provide a basis for germplasm innovation and quality breeding of vegetable soybean.【Method】Using 133 soybean landraces from the Northeast region, the North region, the Huanghuaihai region and the South region, the soluble sugar content of fresh seeds was determined in the three environments of Lianjiang in spring, Fuqing in spring and autumn, in 2021. In combination with 82 187 high-quality SNP markers, the whole genome association analysis of soluble sugar content was conducted based on the mixed linear model MLM (Q+K), and the SNP loci with significantly related to soluble sugar content were identified. The candidate intervals were selected by the significant SNP loci and the extension of 119.07 kb linkage disequilibrium decay distance at both ends. The candidate genes were predicted according to the annotation and tissue expression information of the genes in the candidate intervals.【Result】The variation range of soluble sugar content in fresh seeds under three environments was 3.37-33.84 mg·g-1, the genetic variation coefficient was 24.59%-32.69%, and the heritability of soluble sugar content was 68.14%. 6, 8 and 22 SNPs were significantly associated with the soluble sugar content of fresh seeds were detected in Lianjiang in spring, Fuqing in spring and autumn, respectively, and phenotypic variation was 12.43%-29.27%. A total of 86 genes were obtained in the candidate regions of 9 significant SNP loci with higher interpretation rate of phenotypic variation, and 9 candidate genes were further screened by gene annotation and tissue expression information. These candidate genes are mainly involved in biological processes such as transcription factors, glycoprotein families and carbohydrate synthesis and transport. Among them, Glyma.01g016500, Glyma.13g042100, Glyma.16g131800 and Glyma.16g155300 were more highly expressed in soybean seeds and pods, which can be used as the most potential candidate genes for soluble sugar in fresh soybean seeds.【Conclusion】Through genome-wide association analysis, 36 SNPs significantly associated with soluble sugar content in fresh seeds were detected, and 9 candidate genes were further screened out, which may be involved in the regulation of soluble sugar content in fresh soybean seeds. Among them, Glyma.01g016500, Glyma.13g042100, Glyma.16g131800 and Glyma.16g155300 can be the key candidate genes for regulating soluble sugar content in fresh soybean seeds.

  • SPECIAL FOCUS: OCCURRENCE AND CONTROL OF MIGRATORY PESTS
    TANGBin, LUOYanLin
    Scientia Agricultura Sinica. 2024, 57(20): 3986-3988. https://doi.org/10.3864/j.issn.0578-1752.2024.20.004
  • CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS
    SHANGHang, CHENGYuKun, RENYi, GENGHongWei
    Scientia Agricultura Sinica. 2024, 57(18): 3507-3521. https://doi.org/10.3864/j.issn.0578-1752.2024.18.001

    【Objective】 Starch is the main component of wheat kernel and plays an important role in processing. The gelatinization characteristic of starch is an important index to evaluate its quality. The genetic variation of starch gelatinization was studied to provide basis for improving wheat quality. 【Method】 Seven starch gelatinization traits, including gelatinization temperature, peak time, peak viscosity, trough viscosity, final viscosity, decay value and recovery value, were phenotypically determined in 205 winter wheat varieties. Genome-wide association analysis was performed using 90K chip, and haplotype analysis was performed on the stable and significant sites found. 【Result】 The seven characteristics, such as pasting temperature, showed abundant variation in different environments, and the coefficient of variation of attenuation value was the largest (29.31%-31.14%). There were significant differences among genotype, environment and genotype × environment, and the generalized heritability was 0.69-0.86. Through genome-wide association analysis, we found 198 loci that showed significant associations with seven traits. It was distributed in 20 other linked groups except 6D chromosome. There were 58 sites that were stable in 2 or more environments, involving all 7 traits, such as pasting temperature (10), peak time (5), peak viscosity (12), trough viscosity (10), final viscosity (7), break down (4) and set back (10), which could explain 5.54%-22.21% of genetic variation, twenty-one new sites were identified. By haplotype analysis of multiple effector sites that exist in multiple environments and have high phenotypic contribution, Four haplotypes, Hap1 (66.84%), Hap2 (16.84%), Hap3 (9.70%) and Hap4 (6.63%), were found at Kukri_c17417_407 on chromosome 4A, which were significantly related to peak viscosity and break down. Where Hap2 is the peak viscosity and high break down. (P<0.0001). The distribution frequency of varieties (lines) containing haplotype Hap2 in different ecological regions was from high to low as Huanghuai winter wheat region>foreign varieties>Southwest winter wheat region>Middle and lower reaches of Yangtze River winter wheat region>Northern winter wheat region. There were 11 single cause multieffect sites, among which there were 3 multiple effect sites associated with final viscosity, set back, peak time and trough viscosity. Jagger_c4026_328 and other 11 stable genetic loci located on 1B, 2A, 3A, 3B, 4A, 4B, 5B and 6B were mined, and 11 candidate genes that might be related to wheat starch gelatinization traits were screened. 【Conclusion】 In this study, RVA parameters had high heritability, and the RVA parameters of wheat starch were different in different environments. In this study, RVA parameters had high heritability, and the RVA parameters of wheat starch were different in different environments. 58 stable loci were detected that were significantly associated with starch gelatinization traits, and 4 different haplotypes were identified on chromosome 4A that were significantly associated with peak viscosity and break down, and 11 candidate genes related to starch gelatinization were screened, which could provide help for marker-assisted high-quality wheat breeding.

  • SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT
    TIANYun, WANGXiaoRui, YINMinHao, ZHANGHuiJie
    Scientia Agricultura Sinica. 2024, 57(22): 4507-4521. https://doi.org/10.3864/j.issn.0578-1752.2024.22.010

    【Objective】Based on the current “dual carbon” strategic goal, this study aimed to clarify the current characteristics, spatio-temporal pattern and influencing factors of agricultural net carbon sink, so as to provide the important support for accelerating agricultural sink increase and emission reduction.【Method】Based on the scientific reconstruction of the index system, the carbon sink/carbon emission factor method was used to measure and analyze the current situation of China’s agricultural net carbon sink. Then the spatial autocorrelation model was used to discuss the spatial dependence and spatial heterogeneity. Finally, the least-squares method was used to analyze the main factors affecting the change of its intensity. 【Result】From 2005 to 2022, the total amount of agricultural net carbon sink in China was in an obvious upward trend, although there were some interannual fluctuations, and its evolutionary characteristics could be roughly divided into four stages, namely, “continuous rise”, “fluctuating decline”, “rapid rise”, and “slow rise”; the intensity of agricultural net carbon sink was also in an obvious upward trend, with only a slight difference in the trajectory of the evolution, and the difference in its growth rate could be roughly categorized into four stages: “continuous rapid growth”, “slow growth”, “fluctuating ups and downs”, and “slow growth”. 2022, the amount of agricultural net carbon sink had a large interprovincial difference, with Inner Mongolia being the first and Shanghai being the last, and compared with the year of 2005, all the provinces had a significant increase. In 2022, the net carbon sink intensity of agriculture would be the highest in Henan and the lowest in Qinghai, with all provinces showing different degrees of increase compared with 2005. China’s provincial agricultural net carbon sink intensity as a whole showed obvious spatial dependence, but there was also a local spatial clustering phenomenon, more than 70% of the provinces showed obvious spatial clustering characteristics, and the number of provinces located in the high-high clustering and the low-low clustering was approaching. The structure of arable land use, urbanization level, rural residents' income level and the internal industrial structure of agriculture all had a significant impact on the intensity of agricultural net carbon sink; specifically, the higher the ratio of sown area of grain crops, or the higher the urbanization rate, or the higher the income level of rural residents, or the larger the ratio of plantation industry to animal husbandry, the higher the intensity of net carbon sink in agriculture.【Conclusion】The total amount and intensity of China’s agricultural net carbon sink were in a fluctuating upward trend and there were obvious inter-provincial differences. The intensity of China’s agricultural net carbon sink showed obvious spatial dependence and spatial heterogeneity. The intensity of the agricultural net carbon sink was affected by the structure of arable land use, the level of urbanization, the level of rural residents' income, and the structure of the internal industries of agriculture. The measures should be taken to promote the enhancement of sink and emission reductions and to promote the enhancement of agricultural net carbon sink in agriculture, such as establishing a sound policy support system for the development of low-carbon agriculture, strengthening inter-provincial exchanges and cooperation, and increasing financial support for agriculture.

  • TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY
    ZANGShaoLong, LIULinRu, GAOYueZhi, WUKe, HELi, DUANJianZhao, SONGXiao, FENGWei
    Scientia Agricultura Sinica. 2024, 57(9): 1687-1708. https://doi.org/10.3864/j.issn.0578-1752.2024.09.006

    【Objective】To explore the potential of UAV remote sensing in nitrogen efficiency classification and recognition, a nitrogen efficiency classification method for wheat varieties was constructed, so as to provide the theoretical basis and technical support for nitrogen efficient variety screening.【Method】Six agronomic indicators related to nitrogen efficiency at maturity stage (yield, plant nitrogen accumulation, nitrogen physiological use efficiency, plant dry biomass, total nitrogen uptake of grains, and N harvest index) were used to construct the principal component synthesis value, and K-Means cluster analysis was performed on them. The 121 wheat varieties were divided into three types: high, medium, and low nitrogen efficiency types. A UAV remote sensing platform equipped with a multi-spectral camera was used to obtain remote sensing images of wheat at the jointing, booting and flowering stages, and 34 vegetation indices were extracted to analyze the correlation between vegetation index and nitrogen efficiency comprehensive value. The accuracy of nitrogen efficiency classification models of support vector machine (SVM), random forest (RF), and K-nearest neighbor (KNN) classification methods were compared, and the overall classification accuracy (OA) and Kappa coefficient were used to compare the classification and recognition ability of wheat varieties in different growth periods. Three different feature set screening methods(ReliefF algorithm, Boruta algorithm and RF-RFE algorithm) were used to comprehensively evaluate the optimized feature subsets, and an appropriate classification and recognition method for wheat varieties nitrogen efficiency was established.【Result】With the progress of wheat growth stage, the correlation between vegetation index and the comprehensive value of nitrogen efficiency gradually increased, which reached the highest correlation coefficient at flowering stage (r=0.502). The full feature set of vegetation indices was used to classify the nitrogen efficiency of wheat varieties. For the data of single growth stage, SVM model had the best classification accuracy at flowering stage (OA=77.1%, Kappa=0.591), and the worst classification accuracy at jointing stage (OA=65.6%, Kappa=0.406). In general, the classification accuracy of nitrogen efficiency of varieties with multi-growth stage data fusion was higher than that of single growth stage, among which SVM model with jointing stage + booting stage + flowering stage had the best classification accuracy (OA=80.6%, Kappa=0.669). In order to reduce the number of feature set variables in multi-growth period data fusion, the feature optimization effects of RF-RFE, Boruta and ReliefF algorithms were compared and analyzed. The optimal feature subset based on RF-RFE algorithm had the highest classification accuracy, and its OA and Kappa coefficients were 4.0% and 10.1% higher than those of the full feature set classification model, respectively. Among them, the data fusion of three growth stages had the best classification accuracy (OA=85.4%, Kappa=0.749).【Conclusion】The nitrogen efficiency evaluation method with six nitrogen efficiency indexes - principal component analysis -K-Means were established in this study. The RF-RFE algorithm effectively optimized the number of characteristic subsets of the multi-growth period combination, and obtained high classification accuracy. A nitrogen efficiency classification model of wheat varieties based on the fusion of multi-growth period combination and RF-RFE-SVM technology was established, which provided the theoretical basis and technical support for the rapid and accurate classification and identification of wheat varieties with nitrogen efficiency.

  • CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS
    YANLiuHui, ZHONGQi, MAZengFeng, WEIMinYi, LIUChi, QINYuanYuan, ZHOUXiaoLong, HUANGDaHui, LUYingPing, QINGang, ZHANGYueXiong
    Scientia Agricultura Sinica. 2024, 57(14): 2703-2716. https://doi.org/10.3864/j.issn.0578-1752.2024.14.001

    【Objective】 The heading date plays a crucial role in influencing the regional adaptation and yield of rice (Oryza sativa L.). The identification of early heading genes contributes significantly to enhancing and fine-tuning the regulatory network that controls rice heading, which provides valuable genetic resources for molecular breeding with the goal of achieving early maturity and high yield in rice. 【Method】 CL33, a chromosome segment substitution line with early heading, and 93-11, its recipient parent with late heading, were used as research materials to investigate and analyze their major agronomic traits. Two DNA pools were constructed, comprising plants exhibiting extremely early and late heading. Whole-genome resequencing and BSA-Seq analyses were then conducted to locate the genomic region associated with the heading date. In the subsequent steps, InDel markers within this identified region were developed for fine mapping. The gene LOC-Os08g07740 emerged as the primary candidate gene within localization intervals, determined through gene prediction, candidate gene analyses, as well as references to relevant literatures. This candidate gene was subsequently cloned and analyzed for allelic variations. Moreover, we explored the genetic and phylogenetic relationships of the LOC_Os08g07740 gene within the three rice subgroups, Indica, Japonica and O. rufipogon. This analysis involved studying genomic data within approximately 40 kb upstream and downstream of the gene utilizing bioinformatics software.【Result】 Under both natural long-day and short-day conditions in Nanning, Guangxi, CL33 exhibited a 20-25 days shorter than its recipient parent 93-11. Moreover, under natural long-day conditions, the agronomic traits of CL33 were largely similar to those of 93-11, with the exception of a shortened spike length and a reduced number of grains per spike. Genetic analysis revealed that the early heading trait in CL33 was controlled by a recessive gene. This gene was finely localized within a 100 kb region between the markers PSM8-6 and PSM8-8 on the short arm of rice chromosome 8, encompassing 15 predicted candidate genes. Significantly, the candidate gene ORF13 (LOC_Os08g07740), which shared alleles with known heading date genes like DTH8/Ghd8 emerged as a key candidate. Sequencing and sequence alignment of ORF13 demonstrated an 888 bp coding sequence without introns, encoding a protein of 295 amino acids. Compared to the recipient parent 93-11, LOC_Os08g07740 in CL33 featured a 6 bp insertion and a 9 bp deletion between the 535-536th and 820-821st base pairs, respectively, resulting in consequential amino acid sequence alterations. Hence, it was tentatively named OsEHD8 as the target candidate gene. Genetic evolutionary analyses indicated a significant decrease in genetic diversity within the LOC_Os08g07740 gene in Indica and Japonica compared to O. rufipogon, with a 62.53% decrease in Indica and a 53.76% decrease in Japonica. Nevertheless, the differences in genetic diversity between Indica and Japonica were not statistically significant. The LOC_Os08g07740 gene featured a total of 13 haplotypes, with the Hap_2 possibly representing the common ancestor of the three subgroups. Geographical isolation or environmental differences might have led to the fixation of different haplotypes in the Indica and Japonica subgroups. These findings suggested that the LOC_Os08g07740 gene underwent directional selection in the three subgroups.【Conclusion】 OsEHD8, identified as a functional allele of DTH8/Ghd8, played a key role in promoting early heading in rice under both natural long-day and short-day conditions. Moreover, the chromosomal segment substitution line CL33, which carried the OsEHD8 allele, exhibited no significant differences in other agronomic traits compared to the recipient parent 93-11 under natural long-day conditions, except for a shorter spike length and a reduction in grains per spike.

  • TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY
    ZHANGSuXin, SHENGe, YUQiangYi, WUWenBin
    Scientia Agricultura Sinica. 2024, 57(8): 1469-1489. https://doi.org/10.3864/j.issn.0578-1752.2024.08.005

    【Objective】Cropping systems of cropland are the concrete embodiment of the mode of agricultural production, which reflect the coupled human-environment interactions. The formation is affected by natural resource elements and human land use behavior. This study aims to scientifically understand the spatial-temporal pattern of cropping systems, which helps to optimize agricultural distribution, improve agricultural production capacity, and realize the sustainable agriculture. 【Method】This study combined remote sensing monitoring with spatial decision tree models and other means to construct an inter-annual detection method system for cropping systems, which is designed for Chinese agricultural conditions, and then spatial pattern of cropping systems was analyzed. Firstly, the connotation of cropping systems was defined by identifying concepts such as cropping intensity, multiple cropping index, and considering of characteristics of “long-lasting” “periodicity” “stability”. Secondly, the indicators (i.e. continuity and frequency) were constructed, and were calculated at the pixel scale by the moving time window. Finally, the significance of the cropping intensity and characteristics of cropping system was evaluated. The decision tree method was also applied to determine the type of cropping systems, and the spatial-temporal heterogeneity of cropping systems in different regions was analyzed from the aspects of regional differences and dynamic laws. 【Result】 (1) Quantitatively, the largest area, 53.52%, is occupied by the single-cropping system, followed by the double-cropping system at 23.28%, the seasonal fallow system (i.e. 3 crops in 2 years) and the annual fallow system at 12.80% and 6.94%, respectively. (2) Spatially, the single-cropping system, double-cropping system, seasonal fallow system and annual fallow system are concentrated in Northeast China, North China, South of Yangtze River and “Sickle Bend” areas, respectively. (3) Temporally, it revealed the heterogeneity of cropping system and static multiple cropping index in the time dimension. For example, the regions with multiple cropping index of 1 in 2018 consist of 75.18% single-cropping system, 6.60% double-cropping system, 8.92% seasonal fallow system and 8.02% annual fallow system. 【Conclusion】This study proposed a method for mapping inter-annual cropping systems, combining remote sensing temporal monitoring and spatial decision tree models. It revealed the spatial pattern of cropping systems which is gathered by zone and cropping intensity is higher in the south and lower in the north. The Songnen Plain, “Sickle Bend” and other spatial gathering areas were intuitively displayed. Also, the differences between multi-cropping and cropping system were compared, which were mainly manifested in the spatial inconsistency between the cropping system and the annual multiple cropping index, as well as the periodicity of the cropping system. The results will provide case support for rationally increasing the cropland multi-cropping intensity and promoting the implementation of the “grain storage in the ground” strategy.

  • CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS
    GUICuiLin, MALiang, WANGYinYing, XIEFuGui, ZHAOCaiHong, WANGWenMiao, LIXin, WANGQing, GAOXiQuan
    Scientia Agricultura Sinica. 2024, 57(13): 2509-2524. https://doi.org/10.3864/j.issn.0578-1752.2024.13.002

    【Objective】 Maize stalk rot is one of the common and most devastating diseases in major maize production areas in China. Under natural conditions, maize stalk rot is mostly caused by the synergistic infection of various pathogens. The purpose of this study was to screen elite maize germplasms resistant to the synergistic infection with F. graminearum and F. verticillioides. Meanwhile, QTN associated with resistance to the infection by synergistic infection of two Fusarium species and the candidate resistance genes were identified, which will provide gene resources and theoretical reference for molecular breeding of maize variety resistant to synergistic infection of different pathogens.【Method】 Using a maize natural population as experimental materials, the maize stalk rot phenotypes were investigated upon simultaneous infection with F. graminearum and F. verticillioides. Furthermore, GWAS analysis was conducted to identify significant resistance SNP and to predict candidate genes for stalk rot resistance.【Result】 Through the phenotypic analysis of stalk rot caused by synergistic infection under both field and laboratory conditions, it was found that inbred lines from different sources and subgroups showed significant phenotypic variation. More specifically, the field assay results showed that the inbred lines collected from China were more resistant and that from USA were more susceptible to synergistic infection. Moreover, the inbred lines of tropical and subtropical subgroup were more resistant, whereas the inbred lines of Mixed subgroup more susceptible. The seedling assay results under laboratory condition showed that the lines collected from USA were more resistant, whereas that from CIMMYT were more susceptible. The lines of SS subgroup were more resistant, and that of Mixed subgroup were more susceptible. By integrating field and laboratory phenotypic data, 29 and 16 lines with higher levels of resistance to synergistic infection were screened out respectively, and 6 resistant lines were identified under both conditions. Moreover, based on the field phenotype GWAS, 18 QTNs associated with the resistance were identified, and 93 candidate genes associated with stalk rot resistance to synergistic infection were mined. Among these candidate genes, four genes showed haplotype variation, whose expression levels were up-regulated in disease-resistant lines.【Conclusion】 Using the natural population of maize with great diversity in genetic background, 6 resistant lines to the synergistic infection with Fusarium spp. were identified under two conditions, which can be used as potential germplasm resources for maize stalk rot resistance in the future. Four candidate genes that might be involved in the resistance to synergistic infection were identified by GWAS, which will provide genetic resources for the breeding maize varieties with enhanced resistance to stalk rot caused by F. graminearum and F. verticillioides.

  • CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS
    MAIChunYan, LIUYiKe, LIUHongWei, LIHongJie, YANGLi, WUPeiPei, ZHOUYang, ZHANGHongJun
    Scientia Agricultura Sinica. 2024, 57(19): 3719-3729. https://doi.org/10.3864/j.issn.0578-1752.2024.19.001

    【Objective】To develop high-yielding and FHB-resistant wheat cultivars in the Yellow and Huai River Valley Winter Wheat Zone (YHWZ), simultaneously improving of yield and resistance was conducted in this study.【Method】Using the elite parent dwarf male sterile (DMS) wheat combined with double haploid (DH) technology and molecular marker assisted selection (MAS) of Fhb1 (DMS wheat molecular breeding strategy), DH lines were developed using Sumai 3 as a donor (FHB- resistant parent) and Zhoumai 16’s DMS wheat, Zhoumai 16, Lunxuan 136 and Lunxuan 6 as recipient parents. The agronomic traits (plant height, heading date, yield, etc.) and FHB resistance were evaluated for these DH lines.【Result】A total of 51 Fhb1-DH lines characterized by facultative growth habit, semi-dwarf and white grains were selected using this strategy. The average number of infected spikelets of 51 lines were 5.7 and 7.3 at the 2020Henan and 2020Beijing sites, respectively, and average disease severities were 27.7% and 35.2%, which is not different from moderately susceptible control Huaimai 20. There was no significant difference in grain yield per hm2 between the mean performance of the 51 lines and the control Zhoumai 18. DH116 (Lunxuan 20), a promising line from the 51 lines, was further evaluated for FHB resistance and agronomic traits in multiple environments. The resistance of Lunxuan 20 to FHB was significantly improved, and no significant difference was found in the number of infected spikelets or disease severity between Lunxuan 20 and moderately or highly resistant controls at four sites. Lunxuan 20 showed slightly greater grain yield per hm2, and significantly higher number of spikelets per spike and thousand grain weight (P<0.05), earlier heading date and shorter plant height (P<0.05) than the control Zhoumai 18 in two environments. The grain yield per hm2 of Lunxuan 20 was 4.6% and 1.7% higher than the control cultivar Bainong 207 in the two list trials of Henan Province, and 3.5% higher than Bainong 207 in the demonstration trial. Resistance of Lunxuan 20 to FHB ranged from moderate susceptibility to moderate resistance in two-year list tests using the single-floret injection and spray inoculation methods. Lunxuan 20 carries the semi-dwarfing gene Rht-D1b at the Rht-D1 locus, and the recessive alleles vrn-A1, vrn-B1 and vrn-D1 associated with the winter growth habit at the Vrn-A1, Vrn-B1 and Vrn-D1 loci. Based on the wheat 660K single nucleotide polymorphisms (SNPs), 64.7% of the SNPs were shared by Lunxuan 20 and its parents, and the direct genetic contributions of Zhoumai 16, Lunxuan 136, Lunxuan 6 and Sumai 3 to Lunxuan 20 were 69.8%, 12.6%, 6.1% and 11.5%, respectively.【Conclusion】A high-yielding and FHB-resistant wheat cultivar Lunxuan 20 was bred using the DMS wheat molecular breeding strategy.

  • CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS
    SUXiaoYu, TANZhengWei, LIChunMing, LILei, LUDanDan, YUYongLiang, DONGWei, ANSuFang, YANGQing, SUNYao, XULanJie, YANGHongQi, LIANGHuiZhen
    Scientia Agricultura Sinica. 2024, 57(24): 4825-4838. https://doi.org/10.3864/j.issn.0578-1752.2024.24.001

    【Objective】This study aimed to explore the differences in genome-wide DNA methylation patterns and their relationships with associated gene expression in different heat-tolerant sesame varieties under high temperature stress, in order to gain a deeper understanding of the regulatory mechanisms of DNA methylation in sesame's response to high temperature stress, and to provide a theoretical basis for heat tolerance breeding in sesame. 【Method】Two sesame varieties, Zhengtaizhi 3 (heat-tolerant) and Shandong White Sesame (heat-sensitive), were selected as experimental materials and cultivated under high temperature (41 ℃) and control (30 ℃) conditions for 10 days. Nanopore sequencing technology was used to conduct methylation sequencing of the genomic DNA of these two sesame varieties, and transcriptome sequencing was performed to analyze changes in the expression of associated genes. Minimap 2 software was utilized for reference genome sequence alignment, and Tombo software was employed to detect 5mC, CpG, and 6mA methylation sites. Differentially methylated regions (DMRs) were identified based on a genome segmentation approach. Finally, functional annotation and pathway analysis of DMR-associated differentially expressed genes (DMR-DEGs) were conducted using GO, COG, and KEGG databases. 【Result】Under high temperature stress, significant changes were observed in the genome-wide DNA methylation patterns of both Zhengtaizhi 3 and Shandong White Sesame. Specifically, the m6A and cytosine methylation (mC) contents of Zhengtaizhi 3 increased, while those of Shandong White Sesame decreased. A total of 621 DMRs (Zhengtaizhi 3) and 374 DMRs (Shandong White Sesame) were identified across the entire genome, mainly distributed in promoter and intergenic regions. Further analysis revealed that these DMRs were significantly associated with 113 DMR-DEGs (Zhengtaizhi 3) and 56 DMR-DEGs (Shandong White Sesame), respectively, and that demethylated DMRs were closely related to upregulated gene expression. Functional annotation results indicated that these DMR-DEGs were primarily involved in biological processes such as carbohydrate transport and metabolism, posttranslational modification, protein turnover, signal transduction, and secondary metabolite biosynthesis. 【Conclusion】This study revealed the differences in genome-wide DNA methylation patterns and their relationships with associated gene expression in different heat-tolerant sesame varieties under high temperature stress. Zhengtaizhi 3, a heat-tolerant sesame variety, regulated the expression of related genes by increasing DNA methylation levels under high temperature stress, while Shandong White Sesame, a heat-sensitive variety, exhibited a decreasing trend in methylation levels. In particular, the dynamic changes in CpG site methylation played a crucial role in regulating sesame's response to high temperature stress. These findings provide new insights and theoretical support for understanding the mechanisms of sesame heat tolerance and for heat tolerance breeding.

  • TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY
    ZHAO HuaRong, ZHOU GuangSheng, QI Yue, GENG JinJian, TIAN XiaoLi
    Scientia Agricultura Sinica. 2024, 57(15): 2964-2985. https://doi.org/10.3864/j.issn.0578-1752.2024.15.005

    Objective】Based on the field staging experiments, this study revealed the different responses of winter wheat and summer maize sowing date adjustments in growth and development, photosynthetic physiological characteristics, grain filling, yield formation and quality to climate warming in northern area of North China, providing scientific basis for agricultural production measures to cope with climate change in North China Plain.【Method】Different sowing date experiments of winter wheat and summer maize have been conducted at Hebei Gucheng Agricultural Meteorology National Observation and Research Station in northern area of North China from 2017 to 2023, which were set up in four sowing dates, including 10 d early sowing, 10 d late sowing, 20 d late sowing, and control. The growth process, above-ground dry matter accumulation and distribution, photosynthetic characteristics of leaves, grain filling rate, yield agronomic traits, and grain nutrients of winter wheat and summer maize were observed. 【Result】 The whole growth period of winter wheat was shortened with the delay of sowing date, mainly because of the shortening of seedling stage before winter. There was a parabolic relationship between the whole growth period and sowing date of summer maize. The seedling stage was shortened by 1.3 d, and the flowering stage and grain formation-filling stage were extended by 1.5 d and 1.6 d for every 10 d delay of sowing date. The grain filling characteristics of winter wheat and summer maize were not sensitive to sowing date adjustments, and the grain filling rate of summer maize was little different during different sowing dates, but the grain formation period, the filling end date and the peak date were successively delayed due to the delay of sowing date, and the duration of filling days was shortened by 4.0 d for every 10 d delay of sowing date. Under the background of warm autumn and winter in northern wheat region, the sowing duration of winter wheat was extended, while its influence on the yield was obviously weakened. The delay of sowing date with the increase of sowing seed amount would result in yield increase slightly. The yield of summer maize decreased significantly with the delay of sowing date, and the decline rate of theoretical yield was 1 381.50 kg·hm-2 for every 10 d delay of sowing date, but the yield of winter wheat and summer maize showed a jumping decease for 20 d late sowing. The grain distribution rate increased by 1.67% for winter wheat, decreased by 1.57% for summer maize with every 10 d delay of sowing date. As a result, the harvest index increased by 0.017 for winter wheat, and decreased by 0.016 for summer maize with every 10 d delay of sowing date. The leaf photosynthetic rates (Pn) of winter wheat and summer maize were also different in response to sowing date, they were similar for winter wheat during different sowing dates, while decreased by 1.21 μmol·m-2·s-1 for summer maize for every 10 d delay after sowing date. Sowing date adjustments had no significant effects on grain quality of winter wheat and summer maize in northern area of North China. 【Conclusion】Extending suitable sowing date range and sowing date delay of winter wheat in North China Plain were positive and effective measures to adapt to climate warming. The early sowing of summer maize in North China Plain might avoid the negative effects of high temperature and heat damage, and would promote the increase of yield.

  • CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS
    HAN XuDong, YANG ChuanQi, ZHANG Qing, LI YaWei, YANG XiaXia, HE JiaTian, XUE JiQuan, ZHANG XingHua, XU ShuTu, LIU JianChao
    Scientia Agricultura Sinica. 2024, 57(21): 4175-4191. https://doi.org/10.3864/j.issn.0578-1752.2024.21.002

    【Objective】Genetic improvement for efficient utilization of maize nutrients represents a crucial method to ensure national food security. Exploring quantitative trait locus (QTL) and related candidate genes of nitrogen use efficiency can provide a theoretical basis for improving the efficiency of nitrogen fertilizer in maize and cultivating high-yield and high-efficiency maize varieties. 【Method】In this study, QTL mapping analysis in one recombinant inbred line (RIL) population constructed by KA105 and KB024 was performed for grain yield under two different nitrogen treatments, including the derived traits partial factor productivity from applied nitrogen (PFPN), low nitrogen tolerance coefficient (LNTC) and nitrogen agronomic efficiency (NAE). Concurrently, integrating the seedling transcriptome data of the parent KA105 under nitrogen treatment, differentially expressed genes were identified, and candidate genes associated with maize nitrogen use efficiency were mined through co-expression analysis. Subsequently, the selected candidate genes were validated using qRT-PCR. 【Result】Through mapping analysis, a total of 36 QTLs distributed across different chromosomes were detected, explaining 1.63% to 17.26% of the phenotypic variation. Among these, eight major QTLs with a phenotypic variation explanation rate exceeding 10% were identified, along with seven genetically stable QTLs commonly identified across different traits or environments. Notably, qNNGYP1 located on chromosome 1 has been repeatedly detected in previous studies, with a phenotypic explanation rate of up to 11.73%. Additionally, other QTLs (qNNGYP1, qPFPN1) co-located in this interval across different environments, suggesting it as a focal region for further investigation. Combining transcriptome data of seedlings under low nitrogen stress, 39 differentially expressed genes within these QTL intervals were identified, and 6 key genes were identified through co-expression network prediction. The result of qRT-PCR indicated that the expression trends of the candidate genes under both nitrogen treatments were consistent with the transcriptome data. Specifically, GRMZM2G366873 was involved in the regulation of auxin homeostasis and may participate in maize responses to low nitrogen stress, drought stress, and boron stress through auxin signal transduction, also regulating ear length. GRMZM2G414192 was involved in the response of the photosynthetic system to low nitrogen stress and was regulated by brassinosteroids. GRMZM2G414043 was associated with maize grain length and biomass, while GRMZM2G040642 may be involved in the long-distance signal transduction of nitrogen. 【Conclusion】In summary, a total of 36 QTLs were identified, distributed across chromosomes 1, 4, 5, 7, 8, and 9, including eight major QTLs (PVE>10%). The candidate genes GRMZM2G366873, GRMZM2G414192, GRMZM2G414043, and GRMZM2G040642 were identified as potential genes for maize nitrogen efficiency.

  • SPECIAL FOCUS: SOYBEAN DISEASE RESISTANCE, YIELD AND QUALITY CORRELATION
    SHOUXinYue, LIUZhi, CHENYueHan, LIChenHui, SUNBinCheng, SUNRuJian, HANDeZhi, LUWenCheng, SHENYongHui, WANGXiaoBo, YANLong
    Scientia Agricultura Sinica. 2024, 57(11): 2102-2113. https://doi.org/10.3864/j.issn.0578-1752.2024.11.005

    【Objective】Exploring efficient nodulation soybean germplasm adapted to the ecological conditions of the Bashang area, identifying genetic loci and candidate genes regulating soybean-rhizobium symbiotic nodulation, and improving soybean symbiotic nitrogen fixation efficiency.【Method】This study utilized a natural population of 260 soybean germplasms as the research object, rhizobium strain USDA110 was inoculated under outdoor potted conditions in the Bashang of Hebei Province. The single plant nodule number and single plant nodule dry weight data were used as phenotypic values. Combined with genotype data of the 260 germplasms, a genome-wide association analysis was conducted to explore genes related to soybean-rhizobium symbiotic nodulation.【Result】A total of 18 SNPs significantly associated with soybean nodule number were detected, located on chromosomes 2, 7, 8, 13, 18, and 19. Among them, the significant associated locus BARC_2.01_Chr02_43161654_A_G on chromosome 2 was identified as the main locus controlling soybean nodule number (LOD=3.89). Linkage disequilibrium analysis within the 200 kb interval upstream and downstream of this locus containing BARC_2.01_Chr02_43161654_A_G identified 10 candidate genes regulating soybean nodule number. There was a significant difference in the number of nodules among the materials corresponding to different haplotypes of Glyma.02G243200 (P<0.05), the expression pattern of this gene was queried in the SoyBase database, and it was expressed in root hairs, indicating that Glyma.02G243200 may be a key gene influencing soybean nodule number. Additionally, six SNPs significantly associated with soybean nodule dry weight were identified, located on chromosomes 6, 18, and 20. Among them, the significant associated loci BARC_2.01_Chr06_6069381_G_A and BARC_2.01_Chr06_6192925_T_C on chromosome 6 were identified as the main loci controlling soybean nodule dry weight (LOD=3.49 and LOD=3.35, respectively). Linkage disequilibrium analysis within the 100 kb interval upstream of BARC_2.01_ Chr06_6069381_G_A and downstream of BARC_2.01_Chr06_6192925_T_C identified 14 candidate genes regulating soybean nodule dry weight. Haplotype analysis revealed significant differences in nodule dry weight for the genes Glyma.06G079600 and Glyma.06G079900 between different haplotype materials (P<0.01, P<0.001), the expression pattern of this gene was queried in the SoyBase database, and they were expressed in roots, indicating that these two genes may be key genes influencing soybean nodule dry weight.【Conclusion】This study identified a candidate gene significantly associated with nodule number on chromosome 2 and two candidate genes significantly associated with nodule dry weight on chromosome 6, providing new genetic resources and references for genetic improvement of soybean nodulation traits.

  • TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY
    ZHANGZhen, SHIYu, YUZhenWen, ZHANGYongLi
    Scientia Agricultura Sinica. 2024, 57(13): 2539-2548. https://doi.org/10.3864/j.issn.0578-1752.2024.13.004

    【Objective】 Improving the nitrogen transport and accumulation of nutrient organs after wheat flowering, as well as improving the nitrogen accumulation characteristics of wheat grains, is beneficial for increasing the nitrogen accumulation and yield of wheat. This study aimed to clarify the physiological mechanisms underlying the differences in nitrogen utilization efficiency among wheat plants at different yield levels, so as to provide a theoretical basis for reducing yield differences and improving nitrogen utilization efficiency and to achieve high yield and efficient production of wheat.【Method】 The field experiments were conducted in Shiwang Village, Xiaomeng Town, Shandong Province for two consecutive years from 2020 to 2022. Using Tobacco Farmer 1212 as the planting material, three yield levels of wheat fields with a perennial winter wheat yield of around 10 500 kg·hm-2 (S), 9 000 kg·hm-2 (H), and 7 500 kg·hm-2 (M) were selected to compare and analyze the differences in plant nitrogen accumulation and transport, grain nitrogen accumulation characteristics, and grain yield in wheat fields with different yield levels.【Result】 Compared with H and M wheat fields, S wheat field significantly increased the number of spikes per unit area and thousand grain weight, with grain yield 19.64%-27.91% and 51.68%-80.87% higher than H and M wheat fields, respectively, resulting in the highest nitrogen absorption efficiency, nitrogen partial productivity and nitrogen harvest index. The nitrogen accumulation in the nutrient organs of S wheat field during the flowering period increased by 14.22-42.11 kg·hm-2 and 53.74-103.16 kg·hm-2, respectively. The nitrogen accumulation in mature nutrient organs was S, H>M. Compared with H and M wheat fields, S wheat field significantly increased the nitrogen transport of pre flowering nutrient organs and nitrogen accumulation after flowering, and increased the contribution rate of nitrogen accumulation in post flowering nutrient organs to grains, thereby achieving the highest nitrogen accumulation in mature grains. The S wheat field significantly increased the content of free amino acids and soluble proteins in flag leaves after flowering, for promoting the inter source sink transport of nitrogen. According to the logistic equation fitting, the S wheat field significantly increased the maximum and average accumulation rates of grain nitrogen, prolonged the duration of grain nitrogen accumulation, and was the main reason for obtaining the highest grain nitrogen accumulation.【Conclusion】 Suitable soil environment in S wheat field could promote the transfer of stored nitrogen from vegetative organs to grain, and increase the rate of grain nitrogen accumulation and prolong the duration of grain nitrogen accumulation, which was the main reason for the highest grain yield and nitrogen use efficiency.

  • PLANT PROTECTION
    HEYong, FANXiaoZhu, CHENXinYue, DUANShuJing, HUTingTing, XIERuXue, WANGYuQing, CHENJing
    Scientia Agricultura Sinica. 2024, 57(15): 2986-2996. https://doi.org/10.3864/j.issn.0578-1752.2024.15.006

    Objective】Pepper mild mottle virus (PMMoV) is one of the major viruses that harm peppers worldwide. The 126 kDa protein is an important pathogenic factor encoded by PMMoV, but its pathogenic mechanism remains unclear. This study aims to screen for pepper host factors that interact with the 126 kDa protein, and to provide a theoretical basis for elucidating the pathogenic mechanism of PMMoV.【Method】Firstly, the bait vector pGBK-126 kDa was constructed using homologous recombination. Using pepper leaves as experimental materials, total RNA was extracted from pepper leaves using the Trizol method, and a pepper yeast cDNA library was prepared. Subsequently, the cDNA library was screened using pGBK-126 kDa, and the screening results were subjected to sequence alignment and bioinformatics functional analysis using NCBI and Uniprot. Based on the alignment and analysis results, host factors that may participate in plant disease resistance pathways were selected, and their full-length CDSs were cloned and constructed into the pGADT7 vector. Yeast two-hybrid (Y2H), BiFC, and LCI were used to further verify the interaction between 126 kDa and host factors. Finally, the role of transiently overexpressed host proteins during PMMoV infection was analyzed.【Result】High-quality pepper RNA was extracted without degradation. A high-quality yeast cDNA library was obtained, and the bait plasmid pGBK-126 kDa was successfully constructed. A total of 18 pepper host factors that interact with the 126 kDa protein were screened. Bioinformatics analysis revealed that these 18 host factors are widely involved in multiple pathways such as plant enzyme systems, regulation of material and energy metabolism, DNA-binding transcription, hormone synthesis, and defense responses. Among them, three host factors (LA2, PDHE1, BXL1) showed interactions with 126 kDa in one-to-one Y2H interaction verification, indicating the reliability of the initial screening results. The interaction between 126 kDa and BXL1 was further verified in vitro and in vivo using BiFC and LCI. Transient overexpression of BXL1 significantly inhibited PMMoV infection.【Conclusion】The pGBK-126 kDa bait plasmid was successfully constructed. Based on this plasmid, 18 interacting host factors were obtained when screening the yeast cDNA library, which are widely involved in multiple pathways of plant life activities. The screening results were verified to be reliable. Among them, BXL1 interacts with 126 kDa both in vitro and in vivo, and can inhibit PMMoV infection. The results can provide a good theoretical and material basis for further exploring of the infection mechanism of PMMoV.

  • SPECIAL FOCUS: SEED GERMINATION AND PRE-HARVEST SPROUTING
    DONGHuiXue, WANGJiRui
    Scientia Agricultura Sinica. 2024, 57(7): 1215-1219. https://doi.org/10.3864/j.issn.0578-1752.2024.07.001
  • SPECIAL FOCUS: SOYBEAN DISEASE RESISTANCE, YIELD AND QUALITY CORRELATION
    MIAOLong, SHUKuo, HUYanJiao, HUANGRu, HEGenHua, ZHANGWenMing, WANGXiaoBo, QIULiJuan
    Scientia Agricultura Sinica. 2024, 57(11): 2065-2078. https://doi.org/10.3864/j.issn.0578-1752.2024.11.002

    【Objective】Hardness, a structural feature of seed physical dormancy, is an important trait in soybean domestication. Although hardness is beneficial for seeds to survive in unfavorable environments, it will seriously reduce the emergence rate of soybean in the field, and detrimental to yield and processing quality. Analyzing the QTL and candidate genes using bulked segregant analysis sequencing (BSA-Seq), can provide a theoretical reference for understanding the molecular mechanism of hard seededness in soybean.【Method】The hard seed mutant Mzp661 was obtained from the seeds of Zhongpin 661 induced by ethyl methane sulfonate (EMS), and was crossed with cultivated soybean Zhonghuang 13 (male parent) to construct recombinant inbred line (RIL) population. The progeny lines were investigated for seed hardness, water absorption capacity and anatomical structure of seed coats. Two types of extreme lines in the RIL population, with hard seeds or with imbibed seeds, were selected to construct DNA mixed pools respectively, and then BSA-Seq technology was used to detect genotype differences in extreme-mixed pools and parents. Euclidean distance (ED), delta SNP-index, and delta InDel-index methods were applied to associate hard seed genetic loci of soybean. Combining with bioinformatics analysis, transcriptome data of different soybean tissues and gene annotation information, candidate genes within significant association regions were predicted.【Result】In the progenies of Mzp661, all areas of imbibitive seeds had the penetration ability, and the seed volume increased continuously with the soaking time. However, no changes were observed for hard seeds over 36 hours. With the prolonged of soaking time, the seed coat of hard seeds began to shrink locally and gradually spread to other parts, and finally cotyledons recovered their imbibition ability. The hard seed not only has smooth and compact seed coat, but also has regular network structure of cuticle and thicker palisade layer, while numbers of stomata and loose structures, tiny cracks and thinner palisade layer were existed in the imbibed seeds. These results suggest that the seed hardness of Mzp661 may be caused by the impermeability of the seed coat. ED, delta SNP-index and delta InDel-index association analysis methods not only identified the reported seed physical dormancy locus qHS1, but also simultaneously detected the candidate region Chr.06: 45897227-47746047, which contains a total of 189 genes. Further, transcriptome data and gene annotation predicted that Glyma.06G275300, which is specifically and highly expressed in seeds, might be the candidate gene for this associated region to regulate soybean seed hardness.【Conclusion】Seed hardness of soybean mutant Mzp661 was caused by the impermeability of the seed coat, and Glyma.06G275300 was predicted as a candidate gene affecting the structure of seed coat using BSA-Seq.

  • CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS
    CHENFeiEr, ZHANGZhiPeng, JIANGQingXue, MALin, WANGXueMin
    Scientia Agricultura Sinica. 2024, 57(17): 3335-3349. https://doi.org/10.3864/j.issn.0578-1752.2024.17.003

    【Objective】Branching is a significant factor influencing alfalfa yield, and the SPL family of transcription factors represents a crucial class of regulatory genes involved in branching (tillering) development in a diverse range of plants. The objective of this reserch is to investigate the biological function of MsSPL17 in alfalfa and to elucidate the role of MsSPL17 in regulating the development of alfalfa meristems. This will provide a valuable reference for alfalfa high-yield biological breeding.【Method】Bioinformatics methods were used to anlyze MsSPL17 sequences and also constructing a phylogenetic tree. The tissue expression specificity of MsSPL17 in alfalfa was analyzed by real-time fluorescence quantitative PCR (qPCR). The subcellular localization of MsSPL17 protein was determined by tobacco transient expression system, and the transcriptional self-activation activity of MsSPL17 was verified. The transgenic alfalfa was obtained by Agrobacterium-mediated transformation and phenotypic analysis was carried out. Transcriptome analysis was utilized to screen for differentially expressed genes in transgenic lines and validate them for further research.【Result】MsSPL17 contained an open reading frame of 1 011 bp, encoding a protein composed of 366 amino acids, belonging to the SBP protein family. Phylogenetic analysis showed that the evolution of MsSPL17 and its homologous genes was highly similar to the differentiation of species, indicating that it is a functional conserved gene. MsSPL17 expressed in all tissues, including stems, nodes, leaves and tops during the critical period of alfalfa growth and development, implied the necessary regulating function of this gene in alfalfa branching. Subcellular localization assay showed that MsSPL17 protein was localized in the nucleus. Transcriptional self-activation assay showed that MsSPL17 did not have self-activation activity and could be used in interacting proteins screening. MsSPL17 transgenic silenced lines exhibited a notable phenotype, including an increase in branch number and stem node number, a reduction in internode length, and an enhancement in nutritional quality.【Conclusion】MsSPL17 was successfully cloned, it expressed in key tissues of alfalfa branching development. The protein encoded by MsSPL17 was localized in the nucleus and demonstrated no transcriptional self-activation activity. Transgenic lines exhibiting multi-branching traits were obtained, and the number of branches increased significantly in yield, while the crude protein content increased in quality.

  • CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS
    SUNWeiHao, LIUTing, SANGYiNan, YANGZhengWei, ZHANGGaiSheng, SONGYuLong, ZHANGShuangXi
    Scientia Agricultura Sinica. 2024, 57(13): 2497-2508. https://doi.org/10.3864/j.issn.0578-1752.2024.13.001

    【Objective】 The essence of conventional wheat breeding involves the continuous multi-generation selection and maintenance of hybrid F1 trait heterosis. Exploring the heterosis and combining ability of lodging-related traits among spring wheat varieties (lines) in the Yellow River irrigation area of Ningxia, and clarifying significantly agronomic indexes related to anti-lodging traits in wheat that can provide a certain theoretical basis for utilizing heterosis in lodging traits of spring wheat, and for the screening and maintenance of its descendants in Ningxia.【Method】 This study utilized 14 spring wheat varieties (lines) from Ningxia Yellow River Irrigation Area as parent materials. According to NCⅡ incomplete diallel crossbreeding design, forty-five combinations were produced. Meanwhile, heterosis, combining ability, and correlation analyses were performed on 13 traits related to lodging resistance, such as plant height and culm type index, in their parents and their F1 generation.【Result】 Significant differences in lodging resistance trait were observed among different spring wheat varieties (lines). Meanwhile, there is a certain level of heterosis in lodging resistance traits was evident in the F1 generation. The main stem thrust resistance of NZ42, M6445, and M8887 showed high general combining ability (GCA) values of 11.68, 8.00, and 10.67 respectively. Significant combinations for main stem thrust resistance included M6445×M8887, M6445×MJ48, NZ42×N2038, NZ42×M7723, NZ42×NZ39, and H3015×Ningchun50. Correlation analysis revealed that plant height was significantly positively correlated with the first internode length and second internode weight, and highly significantly positively correlated with the second and fourth internode lengths. Besides, the main stem thrust resistance was highly significantly positively correlated with fresh weight of the main stem, stem diameter, bending moment and culm type index, but significantly negatively correlated with the fourth internode length. However, it was not significantly correlated with the second internode weight and fullness.【Conclusion】 The excellent parent varieties identified were NZ42, M6445, and M8887. Meanwhile, the excellent combinations of NZ42 × NZ39, M6445 × MJ48, and M6445 × M8887 were also observed in this study. In addition, Heterosis was present among most lodging resistance traits in different combinations, but the heterobeltiosis was less pronounced. The resistance to lodging was influenced by both additive and non-additive effects of parental genes, with a greater influence from the maternal genetic background. Furthermore, the plant height and main stem thrust resistance are significantly correlated with the fourth internode length, bending moment, and culm type index, serving as important references for selection of lodging-resistant generations.