
Research on Migration and Safety Threshold of Available Heavy Metals in Soil and Crop Systems
LUGangbin, EShengzhe, YUANJinhua, ZHANGPeng, LIUYana, ZHAOXiaolong
Research on Migration and Safety Threshold of Available Heavy Metals in Soil and Crop Systems
Determining the safety threshold of heavy metals in soil is an important measure to ensure the quality and safety of agricultural products in China. By studying the accumulation and transportation characteristics of five heavy metals (Cr, Cd, Pb, As, and Hg) in different organs of corn and wheat in the cities of Jinchang, Zhangye and Baiyin in Gansu Province and establishing the relationship between the effective content of Cr, Cd, Pb, As, and Hg in soil and crop grains, this study identified the safety threshold of effective heavy metals in soil for corn and wheat systems. This study employed the method and principles of species sensitivity distribution (SSD) and derived the safety threshold of effective heavy metals in soil for corn and wheat planting systems based on the cumulative probability distribution curve of the Logistic function distribution model. The results showed that the accumulation pattern of Cr, Cd, Pb, As and Hg in wheat plants was consistent, namely, roots>stems>grains, and similarly, the accumulation pattern of Cr, Pb, As and Hg in corn plants was roots>stems>grains, while the accumulation pattern of Cd was stems>roots>grains. Utilizing the Logistic function distribution model to fit the cumulative probability distribution curve based on the effective content of heavy metals, the safety thresholds of effective Cr, Cd, Pb, As and Hg in wheat soil were determined to be 0.019, 0.771, 35.294, 2.777 and 0.133 mg/kg, respectively. Meanwhile, the safety thresholds of effective Cr, Cd, Pb, As and Hg in corn soil were determined to be 0.296, 7.90, 52.363, 12.462 and 0.119 mg/kg, respectively. The results of this study indicate that estimating the safe threshold of effective heavy metal content based on the cumulative probability distribution curve method was scientific, providing a scientific basis and support for the safe planting and risk control of wheat and corn.
wheat / corn / available heavy metal / safety threshold / soil heavy metals / species sensitivity distribution method / Logistic function / cumulative probability distribution curve / safety of agricultural product quality {{custom_keyword}} /
表1 土壤pH和有机质含量特征 |
地点 | 指标 | 极小值 | 极大值 | 平均值 | 标准差 | 变异系数/% |
---|---|---|---|---|---|---|
金昌 | pH | 7.97 | 8.55 | 8.26 | 0.14 | 1.69 |
SOM/(g/kg) | 7.81 | 34.32 | 19.27 | 6.49 | 33.68 | |
张掖 | pH | 8.14 | 8.85 | 8.38 | 0.14 | 1.67 |
SOM/(g/kg) | 4.47 | 27.62 | 19.18 | 5.17 | 26.96 | |
白银 | pH | 7.52 | 8.88 | 8.15 | 0.26 | 3.19 |
SOM/(g/kg) | 7.58 | 36.05 | 19.02 | 5.94 | 31.23 |
表2 土壤重金属有效态含量特征 |
采样区 | 指标 | Cr | Cd | Pb | As | Hg |
---|---|---|---|---|---|---|
金昌 | 极小值/(mg/kg) | 0.01 | 0.03 | 1.95 | 0.21 | 0.0001 |
极大值/(mg/kg) | 0.24 | 0.36 | 14.34 | 2.47 | 0.0004 | |
平均值/(mg/kg) | 0.12 | 0.11 | 5.39 | 0.74 | 0.0002 | |
标准差/(mg/kg) | 0.04 | 0.06 | 2.83 | 0.38 | 0.0001 | |
变异系数/% | 33.33 | 54.55 | 52.50 | 51.35 | 50.00 | |
张掖 | 极小值/(mg/kg) | 0.02 | 0.01 | 0.98 | 0.26 | 0.0004 |
极大值/(mg/kg) | 0.23 | 1.46 | 5.37 | 1.26 | 0.0008 | |
平均值/(mg/kg) | 0.12 | 0.13 | 3.33 | 0.52 | 0.0005 | |
标准差/(mg/kg) | 0.06 | 0.28 | 1.01 | 0.18 | 0.0001 | |
变异系数/% | 50.00 | 46.43 | 30.33 | 34.62 | 20.00 | |
白银 | 极小值/(mg/kg) | 0.03 | 0.24 | 7.32 | 0.36 | 0.00001 |
极大值/(mg/kg) | 0.26 | 10.51 | 72.96 | 5.35 | 0.0012 | |
平均值/(mg/kg) | 0.15 | 1.98 | 29.02 | 1.13 | 0.0004 | |
标准差/(mg/kg) | 0.06 | 2.28 | 14.86 | 1.12 | 0.0003 | |
变异系数/% | 40.00 | 115.15 | 51.21 | 99.12 | 75.00 |
表3 玉米根、茎、籽粒对有效态重金属的富集系数 |
重金属 | 地点 | 根 | 茎 | 籽粒 |
---|---|---|---|---|
Cr | 金昌 | 533.64±386.54 | 65.13±19.69 | 2.10±0.47 |
张掖 | 271.65±303.26 | 71.02±34.96 | 2.06±0.50 | |
白银 | 831.49±606.23 | 183.22±101.25 | 2.24±0.87 | |
Cd | 金昌 | 1.28±0.43 | 1.36±0.56 | 0.05±0.03 |
张掖 | 1.12±0.54 | 1.53±4.88 | 0.05±0.03 | |
白银 | 1.09±0.63 | 1.30±1.20 | 0.02±0.02 | |
Pb | 金昌 | 0.74±0.49 | 0.23±0.11 | 0.010±0.005 |
张掖 | 0.39±0.24 | 0.14±0.06 | 0.006±0.003 | |
白银 | 0.49±0.27 | 0.40±0.46 | 0.002±0.002 | |
As | 金昌 | 4.56±2.97 | 1.13±0.49 | 0.03±0.01 |
张掖 | 2.21±1.16 | 0.52±0.30 | 0.03±0.01 | |
白银 | 3.21±3.41 | 1.14±1.21 | 0.03±0.02 | |
Hg | 金昌 | 94.74±76.22 | 48.88±22.62 | 7.59±2.67 |
张掖 | 22.90±9.98 | 19.28±5.07 | 3.29±0.64 | |
白银 | 381.84±540.03 | 96.05±63.50 | 3.32±1.02 |
表4 小麦根、茎、籽粒对有效态重金属的富集系数 |
重金属 | 地点 | 根 | 茎 | 籽粒 |
---|---|---|---|---|
Cr | 金昌 | 3038.56±1825.49 | 320.60±452.61 | 12.60±9.29 |
张掖 | 2116.78±2309.85 | 190.87±147.41 | 9.78±9.06 | |
白银 | 2574.09±2782.37 | 302.40±268.95 | 9.59±11.25 | |
Cd | 金昌 | 2.39±0.96 | 0.91±0.56 | 0.25±0.12 |
张掖 | 4.77±8.11 | 1.08±0.76 | 0.54±0.36 | |
白银 | 1.84±1.55 | 0.74±0.64 | 0.15±0.09 | |
Pb | 金昌 | 1.17±0.53 | 0.20±0.11 | 0.01±0.01 |
张掖 | 0.62±0.36 | 0.15±0.08 | 0.02±0.02 | |
白银 | 0.54±0.44 | 0.25±0.18 | 0.01±0.00 | |
As | 金昌 | 5.13±2.66 | 1.41±0.61 | 0.17±0.08 |
张掖 | 3.27±1.60 | 0.72±0.32 | 0.10±0.05 | |
白银 | 3.94±3.02 | 1.26±0.73 | 0.09±0.06 | |
Hg | 金昌 | 62.80±26.84 | 31.48±10.01 | 4.16±1.28 |
张掖 | 23.44±7.82 | 17.45±5.05 | 2.18±0.46 | |
白银 | 100.76±149.73 | 58.10±82.50 | 3.73±2.85 |
表5 土壤有效态重金属含量与土壤理化性质的相关性 |
参数 | pH | 土壤有机质 含量 | 土壤有效态 Cr含量 | 土壤有效态 Cd含量 | 土壤有效态 Pb含量 | 土壤有效态 As含量 | 土壤有效态 Hg含量 |
---|---|---|---|---|---|---|---|
pH | 1 | ||||||
土壤有机质含量 | -0.224 ** | 1 | |||||
土壤有效态Cr含量 | -0.274 ** | 0.094 | 1 | ||||
土壤有效态Cd含量 | -0.384 ** | 0.144 | 0.235 ** | 1 | |||
土壤有效态Pb含量 | -0.552 ** | 0.161 * | 0.329 ** | 0.802 ** | 1 | ||
土壤有效态As含量 | -0.390 ** | 0.102 | 0.326 ** | 0.550 ** | 0.621 ** | 1 | |
土壤有效态Hg含量 | -0.049 | 0.145 | -0.171 * | 0.104 | 0.057 | 0.088 | 1 |
注:**表示在P<0.01水平上极显著相关,*表示在P<0.05水平上显著相关。 |
[1] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[2] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[3] |
全国土壤污染状况调查公报[R]. 北京: 国土资源部, 2014.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[4] |
曹柳叶. 基于多表面模型的土壤重金属有效态预测及阈值推导[D]. 武汉: 华中农业大学, 2022.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[5] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[6] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[7] |
窦韦强, 安毅, 秦莉, 等. 农用地土壤重金属生态安全阈值确定方法的研究进展[J]. 生态毒理学报, 2019, 14(4):54-64.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[8] |
史明易, 王祖伟, 王嘉宝, 等. 基于富集系数对蔬菜地土壤重金属的安全阈值研究[J]. 干旱区资源与环境, 2020, 34(2):130-134.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[9] |
熊孜, 赵会薇, 李菊梅, 等. 黄淮海平原小麦吸收镉与土壤可浸提镉间关系研究[J]. 农业环境科学学报, 2016, 35(12):2275-2284.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[10] |
王靖菡, 许秋云, 王婷, 等. 基于物种敏感性分布(SSDs)的土壤硒生态基准值推导[J]. 环境科学学报, 2023, 43(3):459-465.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[11] |
陈娟, 袁贝, 任杰, 等. 农用地土壤Cd有效态含量的安全阈值研究[J]. 环境科学研究, 2022, 35(12):2792-2800.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[12] |
吴丰昌, 冯承莲, 张瑞卿, 等. 我国典型污染物水质基准研究[J]. 中国科学:地球科学, 2012, 42(5):665-672.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[13] |
丁昌峰, 李孝刚, 王兴祥. 我国两种典型土壤汞的安全阈值研究——以根茎类蔬菜为例[J]. 土壤, 2015, 47(2):427-434.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[14] |
唐豆豆, 袁旭音, 汪宜敏, 等. 地质高背景农田土壤中水稻对重金属的富集特征及风险预测[J]. 农业环境科学学报, 2018, 37(1):18-26.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[15] |
杨梦丽, 叶明亮, 马友华, 等. 基于重金属有效态的农田土壤重金属污染评价研究[J]. 环境监测管理与技术, 2019, 31(1):10-13+38.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[16] |
杨希, 岳晓岚, 李靖, 等. pH值对土壤重金属污染的影响及其准确测定[J]. 贵州地质, 2021, 38(4):466-471.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[17] |
李思民, 王豪吉, 朱曦, 等. 土壤pH和有机质含量对重金属可利用性的影响[J]. 云南师范大学学报(自然科学版), 2021, 41(1):49-55.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[18] |
王昆艳, 王豪吉, 李双丽, 等. 施加生物炭对三七连作土壤铅有效态含量的影响[J]. 云南师范大学学报(自然科学版), 2019, 39(5):53-57.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[19] |
王永强, 肖立中, 李伯威, 等. 不同改良剂对复合污染重金属形态与再分配的影响[J]. 安徽农业科学, 2009, 37(34):17027-17029,17037.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[20] |
杜彩艳, 祖艳群, 李元. pH和有机质对土壤中镉和锌生物有效性影响研究[J]. 云南农业大学学报, 2005(4):539-543.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[21] |
李廷强, 杨肖娥. 土壤中水溶性有机质及其对重金属化学与生物行为的影响[J]. 应用生态学报, 2004(6):1083-1087.
土壤水溶性有机质是陆地生态系统和水生生态系统中一种重要的、很活跃的化学组分,已成为环境科学、土壤学和生态学等学科的研究热点.土壤DOM对重金属化学与生物行为有重要影响,但其机理尚不清楚.文中从土壤性质、环境条件、人为因素等方面阐述了土壤DOM产生及影响因素,总结评述了DOM对重金属化学行为和生物有效性的影响,将DOM对重金属的影响机制归纳为络合机制、竞争吸附机制、酸碱缓冲机制.在此基础上,提出了DOM研究存在的问题及其展望.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[22] |
陈子扬, 孙孝龙. 土壤中有机质与重金属关系的研究进展[J]. 环境与发展, 2017, 29(8):141-142.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[23] |
张亚丽, 沈其荣, 谢学俭, 等. 猪粪和稻草对镉污染黄泥土生物活性的影响[J]. 应用生态学报, 2003(11):1997-2000.
通过培养试验研究了猪粪和稻草对Cd污染黄泥土生物活性的影响,结果表明,Cd污染土壤的生物活性下降,施用有机肥料后,土壤有效态Cd含量降低,降幅约为40%;微生物量C、N、P和脱氢酶、过氧化氢酶的活性增高,增幅为30%~100%,其中微生物量C、N与土壤有效态Cd之间有显著的负相关关系,可作为污染土壤的生物指标。
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[24] |
Knowledge of sorption and desorption of heavy metals by individual soil components should be useful for modelling the behaviour of soils of arbitrary composition when contaminated by heavy metals, and for designing amendments increasing the fixation of heavy metals by soils polluted by these species. In this study the competitive sorption and desorption of Cd, Cr, Cu, Ni, Pb and Zn by humified organic matter, Fe and Mn oxides, kaolinite, vermiculite and mica were investigated. Due to the homogeneity of the sorbents, between-metal competition for binding sites led to their preferences for one or another metal being much more manifest than in the case of whole soils. On the basis of k(d100) values (distribution coefficients calculated in sorption-desorption experiments in which the initial sorption solution contained 100mgL(-1) of each metal), kaolinite and mica preferentially sorbed and retained chromium; vermiculite, copper and zinc; HOM, Fe oxide and Mn oxide, lead (HOM and Mn oxide also sorbed and retained considerable amounts of copper). Mica only retained sorbed chromium, Fe oxide sorbed cadmium and lead, and kaolinite did not retain sorbed copper. The sorbents retaining the greatest proportions of sorbed metals were vermiculite and Mn oxide, but the ratios of k(d100) values for retention and sorption suggest that cations were least reversibly bound by Mn oxide, and most reversibly by vermiculite.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[25] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[26] |
赵家印, 席运官, 代慧杰, 等. 钝化剂与有机肥配施对土壤有效态重金属及其在生菜中累积的影响[J]. 生态与农村环境学报, 2019, 35(11):1460-1467.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[27] |
成杰民, 潘根兴, 郑金伟. 太湖地区水稻土pH及重金属元素有效态含量变化影响因素初探[J]. 农业环境保护, 2001(3):141-144.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[28] |
祖艳群, 李元, 陈海燕, 等. 蔬菜中铅镉铜锌含量的影响因素研究[J]. 农业环境科学学报, 2003(3):289-292.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[29] |
谭长银, 吴龙华, 骆永明, 等. 不同肥料长期施用下稻田镉、铅、铜、锌元素总量及有效态的变化[J]. 土壤学报, 2009, 46(3):412-418.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[30] |
刘景, 吕家珑, 徐明岗, 等. 长期不同施肥对红壤Cu和Cd含量及活化率的影响[J]. 生态环境学报, 2009, 18(3):914-919.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[31] |
刘灿, 秦鱼生, 赵秀兰. 长期不同施肥对钙质紫色水稻土重金属累积及有效性的影响[J]. 农业环境科学学报, 2020, 39(7):1494-1502.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[32] |
郑倩倩, 王兴祥, 丁昌峰. 基于物种敏感性分布的江苏省典型水稻土Cd安全阈值研究[J]. 土壤, 2019, 51(3):557-565.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[33] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[34] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[35] |
韩东锦, 张乃明, 赵龙, 等. 滇东耕地土壤铅安全阈值研究[J]. 农业环境科学学报, 2022, 41(10):2190-2199.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |