Effects of Biochar and Nitrogen Fertilizer on CO2 and N2O Emissions from Cotton Fields at Different Temperatures

WANGJia, LIUWeiyang, HAOXingming, ZHANGSheng, HEDuo, ZHANGXiaogong, ZHOULimin

PDF(1734 KB)
PDF(1734 KB)
Journal of Agriculture ›› 2024, Vol. 14 ›› Issue (12) : 19-27. DOI: 10.11923/j.issn.2095-4050.cjas2023-0253

Effects of Biochar and Nitrogen Fertilizer on CO2 and N2O Emissions from Cotton Fields at Different Temperatures

Author information +
History +

Abstract

The greenhouse gas emission rules under different farmland management methods were revealed, and the influencing factors and action mechanisms were expounded, so as to deal with greenhouse gas emissions from saline-alkali land in extremely vulnerable areas, mitigate climate change, and provided theoretical basis for greenhouse gas emission reduction in China. An extremely saline soil with electrical conductivity of 9.35 mS/cm and pH of 8.38 was used for indoor culture experiments. Three temperature gradients were set as 15, 25 and 35℃; three nitrogen application levels were set as 0, 120 and 240 kg N/hm2 and three biochar application levels were set as 0, 5 and 10 t/hm2. All treatments were carried out under 60% field water holding capacity and cultured for 45 days. The results showed that temperature and nitrogen application significantly increased CO2 and N2O emissions, and short-term application of biochar could reduce N2O emissions. (1) Under the same temperature and biochar conditions, the application of nitrogen fertilizer significantly increased greenhouse gas emissions. The cumulative emissions of CO2 and N2O at 120 kg N/hm2 were 2.02 times and 1.28 times of the control, respectively. The cumulative emissions of CO2 and N2O were the highest when nitrogen fertilizer rate was 240 kg N/hm2, which were 2.22 times and 1.64 times of the control, respectively. (2) Under the same temperature and nitrogen fertilizer conditions, the application of biochar significantly reduced the emission of N2O. Compared with the control, when the application rate of biochar was 5 t/hm2, the emission of N2O was reduced by 7%. The amount of biochar applied was 10 t/hm2, and the N2O emission was reduced by 13%. (3) Compared with 15℃, cumulative CO2 and N2O emissions at 25℃ increased by 11.34 g C/kg and 39.69 mg N/kg, respectively; the cumulative emissions of CO2 and N2O at 35℃ were the largest, increasing by 48.17 g C/kg and 69.69 mg N/kg, respectively. In summary, this study demonstrates that in the management of extreme saline-alkali soils in agricultural fields, reasonable control of temperature, nitrogen fertilization strategies, and the use of biochar are of significant importance for regulating greenhouse gas emissions.

Key words

dry land / temperature / fertilization / biochar / greenhouse gas emissions

Cite this article

Download Citations
WANG Jia , LIU Weiyang , HAO Xingming , ZHANG Sheng , HE Duo , ZHANG Xiaogong , ZHOU Limin. Effects of Biochar and Nitrogen Fertilizer on CO2 and N2O Emissions from Cotton Fields at Different Temperatures. Journal of Agriculture. 2024, 14(12): 19-27 https://doi.org/10.11923/j.issn.2095-4050.cjas2023-0253

0 引言

气候变暖已成为当前人们关注的热点问题之一,同时氧化亚氮(N2O)、甲烷(CH4)、二氧化碳(CO2)等温室气体(GHG)的排放导致全球变暖正在加速,导致了不可逆转的环境后果[1]。农业活动是影响土壤N2O排放的主要因素,农田作为其重要的排放源,每年所排放的N2O达到全球总量的60%以上[2]。而旱地土壤分布广泛,不仅在中国农业生产中占据极为重要的地位,更是大气中N2O的主要来源[3]。其次,CO2和CH4也是引起温室效应的2种主要气体,这2种气体对温室效应的贡献分别为70%和23%[4]。中国作为一个农业大国,农业发展越快,对中国温室气体浓度的累积影响就越大[5]。研究发现,大气中N2O、CH4和CO2的浓度平均每年分别增加0.31%、0.28%和0.31%[6]。因此,有必要抑制或减缓农业中的N2O、CH4和CO2等气体的排放。
施用肥料是使农田生态系统增产的措施之一,氮肥的施用使作物产量提高了30%~50%[7],为全球数十亿人口提供了40%的营养物质[8]。然而,由于土地利用方法、种植系统、耕作措施不恰当的施用氮肥带来了一系列的环境问题。现如今不断增加肥料的投入远远超过了作物需求,约20%~50%的氮通过温室气体排放、氨挥发、淋溶和径流而流失,从而导致土壤酸化和水体富营养化[9]。基于此,优化施肥的方案对于解决提高作物产量与同时稳定或减少温室气体排放之间的矛盾至关重要。
生物炭是一种生物质原料热解形成的富碳固体[10]和抗生物降解的土壤改良剂,是生物有机材料在无氧或缺氧条件下通过低温裂解而得到的一种不完全燃烧的含碳量极其丰富的固体黑色产物[11],可以实现生物废弃物的资源利用化。将生物炭施在土壤中能够为农作物提供生长发育过程中所需要的营养物质,为中国培育优质高产的农作物。同时,由于生物炭特殊的物理性质可以通过改变土壤结构、含水量、阳离子交换能力、酶活性和微生物群落来影响土壤二氧化碳的排放[12]。现如今,各行各业学者都在致力于寻找生物质炭对土壤固碳减排的有效措施。因此,生物炭对于温室气体排放规律的影响需要进一步深入了解。
生态系统呼吸是全球陆地碳氮循环的主要组成部分,受温度的强烈影响[13]。土壤温度是甲烷和一氧化二氮排放的关键调节器,并对土壤微生物活性具有重要影响,温度升高可能会增加[14]、降低[15]或者不影响[16]土壤碳氮转化速率,而目前有关在不同温度梯度下土壤碳氮转化速率的研究还鲜有报道。因此,需要揭示不同农田管理方式下温室气体的排放规律、阐明其影响因素及作用机理,从而应对极端脆弱区盐碱地温室气体排放,以减轻气候变化,从而为中国温室气体减排提供理论依据。

1 材料和方法

1.1 试验场地与材料

试验于2021年在中国科学院阿克苏农田生态系统国家野外科学观测研究站(80°45′ E,40°37′ N)进行。该地区属于暖温带干旱型气候,年平均气温为11.2℃,多年平均降雨量为45.2 mm,无霜期211 d,全年日照时数2940 h。供试土壤为棉田收获期后0~20 cm的耕层土壤,土壤质地为粉砂质壤土(砂粒46%、粉粒50%和黏粒4%)。这部分土壤含盐量高,是世界上盐渍化干旱区土壤的代表区域。其基本性质如下:pH 8.38;土壤有机质含量为9.45 g/kg;电导率为9.35 mS/cm;铵态氮含量为22.99 mg/kg;硝态氮含量为1057.43 mg/kg;全氮含量为0.22%;供试生物炭用玉米秸秆制成;施用氮肥为含氮量46.7%的分析纯尿素。

1.2 试验设计

采用室内培养结合气相色谱法,对培养样品的N2O、CO2和CH4气体排放通量进行测定。试验分别设置土壤水分为田间持水量60%状况CK(施氮量0 kg N/hm2,施生物炭量0 t/hm2)、T1(施氮量0 kg N/hm2,施生物炭量5 t/hm2)、T2(施氮量0 kg N/hm2,施生物炭量10 t/hm2)、T3(施氮量120 kg N/hm2,施生物炭量0 t/hm2)、T4(施氮量120kg N/hm2,施生物炭量5 t/hm2)、T5(施氮量120 kg N/hm2,施生物炭量10 t/hm2)、N6(施氮量240 kg N/hm2,施生物炭量0 t/hm2)、N7(施氮量240 kg N/hm2,施生物炭量5 t/hm2)、N8(施氮量240 kg N/hm2,施生物炭量10 t/hm2)共9个处理,每个处理重复3次。采用2020年棉田收获期后0~20 cm深度的棉田土壤,将采集的土壤样品置于室内阴凉处自然风干,去除杂质、磨碎并通过2 mm的筛子进行筛分,以达到均匀的粒径。称取风干土100 g于450 mL培养瓶,培养瓶最上端有三通阀,供采集气体使用,瓶盖中央有橡皮塞,使之成为密闭状态。在本研究中,包括对照组在内的所有处理同时都在15、25、35℃的3个温度条件下进行,温度由恒温箱控制。

1.3 土壤分析

土壤电导率(EC)和酸碱度(pH)的测定采用1:5土水比,称取10 g风干土样加入50 mL蒸馏水至于锥形瓶中,在恒温振荡机上振荡30 min后,静置30 min。先后采用电导率测试仪和pH测试仪进行测定,并记录数据。土壤有机碳的测量采用K2Cr2O7-H2SO4氧化法,全氮(TN)用杜马斯自动分析仪测定。

1.4 样品采集和测定

培养试验为期43 d,在培养开始后的第1、3、5、7、9、12、15、18、21、23、25、29、36、43天早晨9:00—11:00进行土壤气体采集,总共采集14次。用注射器通过三通阀抽取45 mL样气,每次采集完气体开盖静置10 min后对培养的样品进行称重,并定量加水,使土壤水分含量维持在60%。采用气相色谱仪(Agilent 7890A,USA)实验装置监测分析不同温度条件下土壤N2O、CO2和CH4排放。

1.5 计算公式

1.5.1 土壤湿度的计算

土壤湿度(WFPS)计算公式如式(1)所示[17]
WFPS=×100%
(1)
其中土壤水质量和干土质量采用烘箱干燥法和环刀法[18]测量。

1.5.2 温室气体排放通量计算

温室气体排放通量采用线性模型(LR)计算[19],线性模型采用气体浓度(c)随时间(t)变化的线性回归方程,计算公式如式(2)所示。
F=ρ×VS×ΔcΔt×273/273(273+t)×60
(2)
式中:F为CO2、N2O、CH4的排放通量[mg/(m2·h)];ρ为箱内气体密度(g/cm3);V为采样箱内空间体积(L);S为采样箱覆盖的土壤面积(m2);Δct为单位时间内温室气体线性变化率[μg/(cm3·min)];t是采样期间的腔室平均温度(℃)。

1.5.3 温室气体累积排放量计算

培养过程中温室气体累积排放量采用公式(3)计算[20]
M=i=1n(Fi+Fi+1)/2×(ti+1-ti)×24
(3)
其中,M为土壤累积CO2、N2O、CH4排放量,Fi+1Fi分别为第i+1次和第i次采样温室气体排放通量;ti+1-ti为第i+1次和第i采样时期之间的间隔,n为培养期内抽样的总次数。

1.6 数据处理

采用的数据首先使用Excel 2019进行标准化处理,所有值均以均值±标准误差表示。利用Origin 2019软件进行绘图,所有统计分析均使用SPSS 20.0版软件进行统计学分析,通过采用连续采样日的每日测量值的线性插值来评估累积的CO2、N2O排放量。

2 结果与分析

2.1 氮肥对CO2和N2O排放的影响

表1中可知,在3种温度下,施用氮肥明显增加了CO2和N2O累积排放量。从图1中可知,施加氮肥处理中CO2排放速率较快,而在未施加氮肥处理中CO2排放速率始终较缓慢。施氮量的增加,CO2的排放通量也随之增加,当排放通量达到峰值之后开始下降,最终逐渐趋于稳定。
表1 裂区试验方差分析表
主处理/℃ 副处理 CO2累积排放量/(g C/kg) N2O累积排放量/(mg N/kg)
15 CK 17.27±0.84 e 29.06±1.13 f
T1 19.95±1.28 de 25.70±1.97 g
T2 21.01±2.13 d 22.83±1.18 h
T3 45.46±2.67 c 44.48±0.79 c
T4 44.55±4.00 c 40.26±1.44 d
T5 44.03±3.24 c 35.05±0.20 e
N6 54.22±3.29 b 53.75±0.34 a
N7 55.01±4.01 ab 46.59±1.96 b
N8 58.96±2.95 a 40.35±1.46 d
25 CK 32.11±1.38 e 69.04±2.22 f
T1 38.81±1.96 d 65.13±0.95 h
T2 43.25±2.82 c 58.86±1.28 i
T3 53.08±2.96 b 75.31±1.38 d
T4 59.13±3.43 a 71.97±0.42 e
T5 61.19±5.76 a 67.73±0.35 g
N6 53.68±3.67 b 100.47±0.83 a
N7 59.13±2.33 a 95.34±1.32 b
N8 62.09±4.30 a 91.40±0.85 c
35 CK 40.82±0.42 h 82.69±0.86 g
T1 46.81±4.50 g 79.67±1.28 h
T2 55.51±5.15 f 76.29±1.05 i
T3 83.27±4.23 e 110.75±1.83 d
T4 97.05±3.65 c 105.39±1.25 e
T5 112.08±3.59 b 100.22±1.10 f
N6 92.79±3.14 d 141.47±1.16 a
N7 113.26±2.72 b 136.34±2.25 b
N8 152.39±2.47 a 132.40±1.59 c
图1 土壤CO2排放通量的动态变化

Full size|PPT slide

表2中可知,在整个培养期间,氮肥不同施用量使得N2O累积排放量均有不同程度的增加。N2O累计排放量在35℃条件下最高,单施氮肥含量为120 kg N/hm2和240 kg N/hm2时,与对照相比分别增加了16.59 mgN/kg 和38.30 mgN/kg。从图2中可知,氮肥施用后,使得培养初期N2O排放通量在第5天时迅速达到峰值,并且35℃时N2O排放通量最大。
表2 氮肥×生物炭因素的多重比较
处理 CO2累积排放量/(g C/kg) N2O累积排放量/(mg N/kg)
CK 30.07 h 60.26 g
T1 35.19 g 56.83 h
T2 39.92 f 52.66 i
T3 60.60 e 76.85 d
T4 66.91 d 72.54 e
T5 72.43 c 67.67 f
N6 66.90 d 98.56 a
N7 75.80 b 92.76 b
N8 91.15 a 88.05 c
图2 土壤N2O排放通量的动态变化

Full size|PPT slide

2.2 生物炭对温室气体排放的影响

图3中可知,对于CO2而言,在3种温度下,土壤中添加生物炭显著提高了CO2的排放通量。单施用生物炭含量为10 t/hm2时的CO2排放通量最高,始终超过单施用生物炭含量为0、5 t/hm2 。由表1可知,3种温度下,单施用生物炭含量为0、5 t/hm2的CO2累积排放量是其对照的1倍。与CK相比,在15、25、35℃时,T1处理添加生物炭为5 t/hm2的累积CO2排放量分别增加了2.68、6.70、5.99 g C/kg,同样,与CK处理相比,T2处理添加生物炭为10 t/hm2在15、25、35℃时CO2累积排放量分别增加了3.74、11.14、14.69 g C/kg。同时,从表2中得知添加生物炭均与对照相比差异显著。
图3 土壤CO2排放通量的动态变化

Full size|PPT slide

图4中可知,对于N2O而言,在3种温度下,土壤中添加生物炭抑制了N2O的排放。伴随施用生物炭量的增加,N2O的排放通量逐渐减小。从表2可看出,单独施用5 t/hm2生物炭量时,在15℃条件下与对照相比,N2O累积排放量减少了3.36 mg N/kg;在25℃条件下,N2O累积排放量减少了3.91 mg N/kg;在35℃条件下,N2O累积排放量减少了3.02 mg N/kg。单独施用10 t/hm2生物炭量时,在15℃条件下,N2O累积排放量减少了6.23 mg N/kg;在25℃条件下,N2O累积排放量减少了10.18 mg N/kg;在35℃条件下,N2O累积排放量减少了6.40 mg N/kg。在施氮肥水平为240 kg N/hm2情况下,所有生物炭处理的N2O排放均显著下降,这意味着在高浓度的氮肥施肥条件下,生物炭可以减少N2O排放。
图4 土壤N2O排放通量的动态变化

Full size|PPT slide

2.3 温度对温室气体排放的影响

表3可知,在培养期间,对于CO2和N2O而言,土壤呼吸与温度呈显著正相关,土壤呼吸随温度升高而增加,通过提高培养温度,所有改良的土壤呼吸量均显著增加,累积排放量分别在15~25℃和25~35℃之间增加,且温度在25~35℃之间CO2排放显著增加。其中,25℃与35℃的CO2累积排放量分别是15℃的1.28倍和2.2倍。
表3 温度因素的多重比较
处理/℃ CO2累积排放量/(g C/kg) N2O累积排放量/(mg N/kg)
15 40.05 c 37.56 c
25 51.39 b 77.25 b
35 88.22 a 107.25 a

3 讨论

3.1 氮肥对温室气体排放的影响

氮肥的施用,增加了CO2的累积排放量。李雪松等[21]研究表明,土壤CO2累积排放量随着氮肥施用量的增加而显著增高。韩金等[22]发现各处理的CO2排放均有排放高峰的出现,并且氮肥施用与CK相比,CO2累积排放量显著升高,这是由于氮肥的施用能够调节土壤的C/N比值,在短时间的培养内使得CO2大量排放,这与本研究结论一致。但刘秀云[23]研究表明施用氮肥降低了旱作春玉米生长季CO2排放总量的结论,其原因由于作物生物量可能是影响二氧化碳排放的另一个因素,作物高生产力减轻了二氧化碳向大气的释放[24]
氮肥的施用,促进了N2O的排放。本研究在培养初期施用氮肥后使得N2O排放通量在第5天时迅速达到峰值,这与LYU[25]N2O峰值首次在灌溉后追肥出现的结论相同,是由于氮肥施用初期由于激发效应使得土壤N2O排放通量急剧增加。周君玺[26]观察到施氮处理明显增加了全年N2O的累积排放量,该研究成果与我们试验所得到的结论一致。但李平等[27]在短期试验中发现施用氮肥对N2O的排放没有显著的影响,其原因可能是由于培养时间短有关,但在土壤中施用氮肥一周以后,硝化作用才开始迅速发生。

3.2 生物炭对温室气体的影响

生物炭的施用增加了CO2的排放,其他研究也报道了类似的结果。TANG等[28]得出生物炭对土壤CO2排放量显著增加,HE等[29]通过研究表明生物炭改良剂使土壤CO2通量平均显著增加,这与本研究结果相同。相反,一些研究表明,生物炭施用没有影响或减少土壤二氧化碳排放[30]。这种效应的差异可能归于生物炭的特征、土壤性质和试验持续时间的差异[31]。在本研究中,生物炭施用增加CO2排放的原因是分解和释放生物炭中含有的有机或无机碳[32],特别是在短期实验中[33],已经证明,不稳定的生物炭碳库的平均停留时间估计约为108 d,短于半年研究的平均生物炭分解率比那些超过一年研究的平均生物炭分解率高4倍[31]。我们的研究支持了这一结论,因为试验持续时间约为45 d。因此,短期施用生物炭可以刺激碳矿化和CO2的产生,而这些发现进一步的研究评估是否可以在长期施用生物炭试验研究中发展,建议有更进一步的研究来确定。
在3种不同氮肥处理下,施用生物炭对N2O排放具有一定的动态影响。在整个试验过程中,各处理的N2O排放量具有相似的时间变化规律。通过补充水分,尤其是施用氮肥后,N2O排放量增加,而生物炭处理对N2O的排放有着减少的影响,KOTUŠ等[34]研究也报道了类似的结果。相同的,VAN等[35]发现干旱土壤中生物炭施用降低了N2O排放。但万小楠[36]得出生物炭的施用促进了N2O的排放,其原因很可能是由于降水引起的土壤含水量突然升高造成的。当土壤被水饱和时,土壤孔隙以及生物炭本身的孔隙被水填满,形成厌氧环境。这种条件通常会导致N2O排放增加,主要是通过反硝化过程[37]

3.3 温度对温室气体的排放的影响

据报道,在不同生物炭处理下,土壤CO2排放量与土壤温度之间存在指数相关性[38]。韩金[22]研究结果也表明,温度升高导致土壤CO2排放量增加。在我们的研究中也观察到了这种关系,不管生物炭施用水平如何,温度升高均可观察到土壤CO2排放量增加。本研究结果证实了在高温下排放大量二氧化碳的假设,特别是在活性有机碳中。值得注意的是,虽然土壤中含有显著的碳酸盐,但其pH 8.83,高于碳酸盐解离值,因此CO2的排放可归因于有机质的衰变。已知,由于土壤微生物群落的渗透胁迫增加,中盐渍土壤的土壤呼吸和微生物活性降低[39]。然而,在本研究中,整个45 d的潜伏期内,二氧化碳的产生表明,即使在盐极高的盐渍条件下,异养微生物仍然活跃。CO2排放在15℃时最低,在35℃时最高,表明热量增加了微生物活性,这也是盐渍土壤的典型效应[40]
随着温度的升高,N2O的排放量也随之增加,其他研究也得出了类似的结论。例如,SZUKICS等[41]表明随着温度升高,硝化作用增强导致N2O排放量增加。REDDY等[42]得出在25℃和35℃时,N2O排放量均显著高于15℃条件下。但谢军飞[43]发现大豆苗期地表温度变化趋势与N2O通量日变化之间没有明显的相关性,其原因可能是由于高温抑制酶活性,从而减弱了硝化作用。

4 结论

(1)在相同温度和生物炭条件下,氮肥的施用增加了温室气体的排放。当施氮量为120 kg N/hm2时CO2和N2O累积排放量分别是对照的2.02倍和1.28倍;施氮肥量为240 kg N/hm2时CO2和N2O累积排放量最大,分别是对照的2.22倍和1.64倍。
(2)在相同温度和氮肥条件下,生物炭的施用明显降低了N2O的排放。与对照相比,当生物炭施用量为5 t/hm2时,与对照相比N2O排放量减少7%;生物炭施用量为10 t/hm2,N2O排放量减少13%。
(3)温度升高促进了温室气体的排放,与15℃相比,25℃的CO2和N2O累积排放量分别增加11.34 g C/kg和39.69 mg N/kg;35℃的CO2和N2O累积排放量最大,分别增加48.17 g C/kg和69.69 mg N/kg。

References

[1]
SUSAN S, DANIEL J S, SANFORD T J, et al. Persistence of Climate changes due to a range of greenhouse gases[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(43):18354-9.
Emissions of a broad range of greenhouse gases of varying lifetimes contribute to global climate change. Carbon dioxide displays exceptional persistence that renders its warming nearly irreversible for more than 1,000 y. Here we show that the warming due to non-CO(2) greenhouse gases, although not irreversible, persists notably longer than the anthropogenic changes in the greenhouse gas concentrations themselves. We explore why the persistence of warming depends not just on the decay of a given greenhouse gas concentration but also on climate system behavior, particularly the timescales of heat transfer linked to the ocean. For carbon dioxide and methane, nonlinear optical absorption effects also play a smaller but significant role in prolonging the warming. In effect, dampening factors that slow temperature increase during periods of increasing concentration also slow the loss of energy from the Earth's climate system if radiative forcing is reduced. Approaches to climate change mitigation options through reduction of greenhouse gas or aerosol emissions therefore should not be expected to decrease climate change impacts as rapidly as the gas or aerosol lifetime, even for short-lived species; such actions can have their greatest effect if undertaken soon enough to avoid transfer of heat to the deep ocean.
[2]
董星丰, 陈强, 李浩, 等. 全球气候变化对我国高寒地区冻土温室气体通量的影响[J]. 土壤与作物, 2019, 8(2):178-85.
[3]
李玥, 牛俊义, 李广, 等. 黄土丘陵区旱地春小麦气候适宜度及其变化特征——以定西市李家堡乡麻子川村为例[J]. 干旱区研究, 2014, 31(4):627-35.
为应对气候变暖对农业生产的影响,定量评价气候要素对春小麦生长的影响,运用模糊数学理论和滑动平均模拟法,利用前人建立的气候适宜度模型,进行春小麦气温、降水、日照隶属度模型和气候适宜度模型的研究。结果表明:春小麦全生育期气温、降水适宜度呈下降趋势,而日照无明显变化趋势。生育期内日照适宜度最高,气温次之,降水适宜度最低。苗期降水适宜度最低,抽穗期次之,气温适宜度苗期最低,变异系数最大,表明苗期的降水和气温是影响春小麦生长的关键,其次是抽穗期。降水是制约旱地春小麦生长最关键的气候因素,且气候适宜度随气候变化呈下降趋势,并在各发育阶段和年际变化过程中都呈不稳定波动状态,对春小麦生长具有极显著的负效应。全球气候变化增加了黄土丘陵区春小麦生产的气候风险。
[4]
IPCC. Climate change 2013:the physical science basis. contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change[R]. Cambridge university press, 2013.
[5]
张浩东, 贾俊香, 马智勇. 生物炭对山西菜地土壤温室气体排放强度的影响[J]. 山西农业科学, 2021, 49(1):64-68,75.
[6]
WMO. The state of greenhouse gases in the atmosphere based on global observations through 2012[J]. WMO greenhouse gas bulletin, 2013, 9:1-4.
[7]
CHARLES J H, JOHN R B G, IAN R, et al. Food security: the challenge of feeding 9 billion people[J]. Science, 2010, 327(5967):812-818.
Continuing population and consumption growth will mean that the global demand for food will increase for at least another 40 years. Growing competition for land, water, and energy, in addition to the overexploitation of fisheries, will affect our ability to produce food, as will the urgent requirement to reduce the impact of the food system on the environment. The effects of climate change are a further threat. But the world can produce more food and can ensure that it is used more efficiently and equitably. A multifaceted and linked global strategy is needed to ensure sustainable and equitable food security, different components of which are explored here.
[8]
JAMES N G A R, JAN W E T, MATEETE B, et al. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions[J]. Science, 2008, 320(5878):889-892.
Humans continue to transform the global nitrogen cycle at a record pace, reflecting an increased combustion of fossil fuels, growing demand for nitrogen in agriculture and industry, and pervasive inefficiencies in its use. Much anthropogenic nitrogen is lost to air, water, and land to cause a cascade of environmental and human health problems. Simultaneously, food production in some parts of the world is nitrogen-deficient, highlighting inequities in the distribution of nitrogen-containing fertilizers. Optimizing the need for a key human resource while minimizing its negative consequences requires an integrated interdisciplinary approach and the development of strategies to decrease nitrogen-containing waste.
[9]
JU X T, GUANG X X, XIN P C, et al. Reducing environmental risk by improving N management in intensive Chinese agricultural systems[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(19):3041-6.
[10]
DOMINIC W, LEHMANN J, OGLE S, et al. Greenhouse gas inventory model for biochar additions to soil[J]. Environmental science & technology, 2021(51):55.
[11]
王国强, 孙焕明, 郭琰. 生物炭对CH2和N2O排放的影响综述[J]. 中国农学通报, 2018, 34(27):118-23.
稻田是大气CH4和N2O的重要排放源,减少稻田CH4和N2O排放对缓解全球气候变暖具有重要意义。生物炭具有含碳量高、难分解、比表面积大、疏松多孔等特性。利用生物炭可改善稻田土壤理化性质及微生物学性质,减少温室气体的排放,提高水稻产量。在现有相关研究的基础上,结合国内外研究进展,回顾了国内外生物炭的研究历史及特性,全面评述了生物炭影响稻田温室气体排放的作用机理,以及对稻田温室气体CH4和N2O排放、综合温室效应(GWP)、温室气体排放强度(GHGI)、净生态系统经济预算(NEEB)的影响等国内外研究进展,提出了未来生物炭在稻田温室气体排放方面的研究方向。
[12]
LEHMANN J, MATTHIAS C R, JANICE T, et al. Biochar effects on soil biota - a review[J]. Soil biology and biochemistry, 2011, 43(9):1812-1836.
[13]
WU G, XIAN M C, JUN L, et al. Effects of soil warming and increased precipitation on greenhouse gas fluxes in spring maize seasons in the North China Plain[J]. Science of the total environment, 2020:734.
[14]
GUNTIÑAS M E, LEIRÓS M C, TRASAR-CEPEDA C, et al. Effects of moisture and temperature on net soil nitrogen mineralization: a laboratory study[J]. European journal of soil biology, 2011:48.
[15]
STOTTLEMYER R, DAVID T. Nitrogen mineralization in a mature boreal forest, Isle Royale, Michigan[J]. Journal of environmental quality, 1999, 28(2).
[16]
王少杰. 氮肥与秸秆还田对陕西关中灌区农田CO2、CH4排放的影响[D]. 杨凌: 西北农林科技大学, 2012.
[17]
DING W X, YAN C, ZUCONG C, et al. Nitrous oxide emissions from an intensively cultivated maize-wheat rotation soil in the North China Plain[J]. Science of the total environment, 2006, 373(2).
[18]
BLAKE R G, HARTGE K H, BULK D. Methods of soil analysis[J]. Part 1 physical and mineralogical methods, 1986, 5:363-75.
[19]
石书静, 高志岭. 不同通量计算方法对静态箱法测定农田N2O排放通量的影响[J]. 农业环境科学学报, 2012, 31(10):2060-2065.
[20]
TANG Y, GAO W, CAI K, et al. Effects of biochar amendment on soil carbon dioxide emission and carbon budget in the karst Region of Southwest China[J]. Geoderma, 2021, 385:114895.
[21]
李雪松, SAJJAD R, 刘占军, 等. 氮肥及硝化抑制剂配合施用对石灰性土壤二氧化碳释放的影响[J]. 农业环境科学学报, 2017, 36(8):1658-63.
[22]
韩金. 不同土壤改良措施对豫中烟田净温室效应的影响[D]. 郑州: 河南农业大学, 2022.
[23]
李秀云, 张洪培, 沈玉芳, 等. 生物炭与氮肥对旱作春玉米农田CO2和CH4排放特征的影响[J]. 西北植物学报, 2016, 36(6):1216-24.
[24]
JAMES C, TYLER V. Assessing long-term impacts of increased crop productivity on atmospheric CO2[J]. Energy policy, 1996, 24(5):403-411.
A full assessment of the impacts of land clearance and crop production on atmospheric CO2 requires a systems approach. By considering long-term soil carbon changes and fossil fuel energy inputs, we show that increased crop productivity will alleviate CO2 release to the atmosphere primarily by preventing additional land cultivation. Each hectare of cropland undergoing a simulated threefold crop productivity increase here prevents a net release on the order of 150-200 Mg C to the atmosphere over 100 years by avoiding additional land cultivation which would otherwise be required. This effective carbon sink would slowly diminish with time due to fossil fuel energy input requirements. However, future self-containment of the energy needs of high-yield crop production may displace on the order of 1.0 Pg C per year of fossil fuel carbon, in addition to the carbon sink attributable to avoided land cultivation. By avoiding land cultivation, high yield crop systems also preserve natural ecosystems.
[25]
LYU X D, WANG T, MA Z M, et al. Enhanced efficiency nitrogen fertilizers maintain yields and mitigate global warming potential in an intensified spring wheat system[J]. Field crops research, 2019, 244(C):107624.
[26]
周君玺. 控释氮肥配施对不同覆盖旱作农田温室气体排放的影响[D]. 杨凌: 西北农林科技大学, 2019.
[27]
李平, 郎漫, 李淼, 等. 不同施肥处理对东北黑土温室气体排放的短期影响[J]. 环境科学, 2018, 39(5):2360-67.
[28]
Y TANG, GAO W, CAI K, et al. Effects of biochar amendment on soil carbon dioxide emission and carbon budget in the karst region of Southwest China[J]. Geoderma, 2021, 385:1148-1195.
[29]
HE Y H, ZHOU X H, JIANG L L, et al. Effects of biochar application on soil greenhouse gas fluxes: a meta‐analysis[J]. GCB bioenergy, 2017, 9(4):743-55.
[30]
KARHU K, MATTILA T, BERGSTRÖM I, et al. Biochar addition to agricultural soil increased CH4 uptake and water holding capacity-results from a short-term pilot field study[J]. Agriculture, ecosystems & environment, 2011, 140(1-2):309-313.
[31]
WANG J Y, XIAO J P, YING L L, et al. Effects of biochar amendment in two soils on greenhouse gas emissions and crop production[J]. Plant and soil, 2012, 360(1):287-298.
[32]
ZAVALLONI C, ALBERTI G, BIASIOL S, et al. Microbial mineralization of biochar and wheat straw mixture in soil: a short-term study[J]. Applied soil ecology, 2011, 50:45-51.
[33]
LORENZ K, LAL R. Biochar application to soil for climate change mitigation by soil organic carbon sequestration[J]. Journal of plant nutrition and soil science, 2014, 177(5):651-70.
[34]
KOTUŠ T, ŠIMANSKÝ V, DRGOŇOVÁ K, et al. Combination of biochar with N-fertilizer affects properties of soil and N2O emissions in maize crop[J]. Agronomy, 2022, 12(6):1314.
[35]
ZWIETEN L V, SINGH B P, KIMBER S W L, et al. An incubation study investigating the mechanisms that impact N2O flux from soil following biochar application[J]. Agriculture, ecosystems & environment, 2014, 191:53-62.
[36]
万小楠, 赵珂悦, 吴雄伟, 等. 秸秆还田对冬小麦-夏玉米农田土壤固碳、氧化亚氮排放和全球增温潜势的影响[J]. 环境科学, 2022, 43(1):569-576.
[37]
TULLBERG J, ANTILLE D L, BLUETT C. Controlled traffic farming effects on soil emissions of nitrous oxide and methane[J]. Soil and tillage research, 2018, 176:18-25.
[38]
LU N, LIU X R, LIU D Z, et al. Effect of biochar on soil respiration in the maize growing season after 5 years of consecutive application[J]. Soil research, 2014, 52(5):505-512.
[39]
MAVI M S, PETRA M, CHITTLEBOROUGH J D, et al. Salinity and sodicity affect soil respiration and dissolved organic matter dynamics differentially in soils varying in texture[J]. Soil biology and biochemistry, 2012, 45:8-13.
[40]
JANNA P, PETTERSSON M, BAATH E. Comparison of temperature effects on soil respiration and bacterial and fungal growth rates[J]. FEMS microbiology ecology, 2005, 52(1):49-58.
Temperature is an important factor regulating microbial activity and shaping the soil microbial community. Little is known, however, on how temperature affects the most important groups of the soil microorganisms, the bacteria and the fungi, in situ. We have therefore measured the instantaneous total activity (respiration rate), bacterial activity (growth rate as thymidine incorporation rate) and fungal activity (growth rate as acetate-in-ergosterol incorporation rate) in soil at different temperatures (0-45 degrees C). Two soils were compared: one was an agricultural soil low in organic matter and with high pH, and the other was a forest humus soil with high organic matter content and low pH. Fungal and bacterial growth rates had optimum temperatures around 25-30 degrees C, while at higher temperatures lower values were found. This decrease was more drastic for fungi than for bacteria, resulting in an increase in the ratio of bacterial to fungal growth rate at higher temperatures. A tendency towards the opposite effect was observed at low temperatures, indicating that fungi were more adapted to low-temperature conditions than bacteria. The temperature dependence of all three activities was well modelled by the square root (Ratkowsky) model below the optimum temperature for fungal and bacterial growth. The respiration rate increased over almost the whole temperature range, showing the highest value at around 45 degrees C. Thus, at temperatures above 30 degrees C there was an uncoupling between the instantaneous respiration rate and bacterial and fungal activity. At these high temperatures, the respiration rate closely followed the Arrhenius temperature relationship.
[41]
UTE S, ABELL G C J, HÖDL V, et al. Nitrifiers and denitrifiers respond rapidly to changed moisture and increasing temperature in a pristine forest soil[J]. FEMS microbiology ecology, 2010, 72(3):395-406.
Complete cycling of mineral nitrogen (N) in soil requires the interplay of microorganisms performing nitrification and denitrification, whose activity is increasingly affected by extreme rainfall or heat brought about by climate change. In a pristine forest soil, a gradual increase in soil temperature from 5 to 25 degrees C in a range of water contents stimulated N turnover rates, and N gas emissions were determined by the soil water-filled pore space (WFPS). NO and N(2)O emissions dominated at 30% WFPS and 55% WFPS, respectively, and the step-wise temperature increase resulted in a threefold increase in the NO(3)(-) concentrations and a decrease in the NH(4)(+) concentration. At 70% WFPS, NH(4)(+) accumulated while NO(3)(-) pools declined, indicating gaseous N loss. AmoA- and nirK-gene-based analysis revealed increasing abundance of bacterial ammonia oxidizers (AOB) with increasing soil temperature and a decrease in the abundance of archaeal ammonia oxidizers (AOA) in wet soil at 25 degrees C, suggesting the sensitivity of the latter to anaerobic conditions. Denitrifier (nirK) community structure was most affected by the water content and nirK gene abundance rapidly increased in response to wet conditions until the substrate (NO(3)(-)) became limiting. Shifts in the community structure were most pronounced for nirK and most rapid for AOA, indicating dynamic populations, whereas distinct adaptation of the AOB communities required 5 weeks, suggesting higher stability.
[42]
REDDY N, DAVID M C. Quantifying the effects of active and cured greenwaste and dairy manure application and temperature on carbon dioxide, nitrous oxide, and dinitrogen emissions from an extreme saline-sodic soil[J]. Catena,2019, 173(2019):83-92.
[43]
谢军飞, 李玉娥. 土壤温度对北京旱地农田N2O排放的影响[J]. 中国农业气象, 2005(1):8-11.
Share on Mendeley
PDF(1734 KB)

Collection(s)

Cotton

69

Accesses

0

Citation

Detail

Sections
Recommended

/