Differential Proteomic Analysis of Exosomes in Hemolymph of Procambarus clarkii Before and After Androgenic Gland Ablation

YANGSiqi, WANGQishuai, LIYanhe

PDF(1915 KB)
PDF(1915 KB)
Journal of Agriculture ›› 2024, Vol. 14 ›› Issue (11) : 56-63. DOI: 10.11923/j.issn.2095-4050.cjas2023-0220

Differential Proteomic Analysis of Exosomes in Hemolymph of Procambarus clarkii Before and After Androgenic Gland Ablation

Author information +
History +

Abstract

In order to understand the regulation factors that may be involved in gonadal differentiation of P. Procambarus, in this study, the proteome of exosomes in the hemolymph before and after androgenic gland ablation of P. clarkii was sequenced and analyzed. The results showed that a total of 469 proteins were identified in hemolymph exosomes, and 98 differentially expressed proteins were screened. Among which two differentially expressed proteins, 14-3-3 zeta and cell division cycle protein 27 homolog, may be involved in the sex regulation of P. clarkii.

Key words

Procambarus clarkii / androgenic gland / exosomes / proteome

Cite this article

Download Citations
YANG Siqi , WANG Qishuai , LI Yanhe. Differential Proteomic Analysis of Exosomes in Hemolymph of Procambarus clarkii Before and After Androgenic Gland Ablation. Journal of Agriculture. 2024, 14(11): 56-63 https://doi.org/10.11923/j.issn.2095-4050.cjas2023-0220

0 引言

克氏原螯虾(Procambarus clarkii)因其味道鲜美、蛋白质含量高、脂肪含量相对较低、脂肪酸组成理想、胆固醇含量低而被认为是一种理想的食物来源[1]。因此克氏原螯虾养殖业在中国不断发展,如何获得更好的养殖效益是其养殖业中的热点之一。克氏原螯虾存在性别二态性[2]。且雌雄克氏原螯虾由于性成熟时间的差异,以及在选育过程中对2种性别施加的选择压力的不同,生长和形态通常存在相当大的差异,雌性的规格均匀性、出肉率显著高于雄性[3-4]。正因为克氏原螯虾雌雄之间的差异,单性养殖的实现可以增加其养殖效益。而对克氏原螯虾性别分化和调控机制的研究有助于单性养殖技术的研发。
促雄性腺(Androgenic gland,AG)控制着雄性甲壳动物生殖系统的分化,是维持精子生成的必要条件[5]。在多种虾蟹中AG的摘除以及植入引起了虾蟹的雌性化或雄性化[6]。对AG的研究有助于我们了解克氏原螯虾性别分化和调控。由磷脂双分子层膜包裹核酸、蛋白质和脂质,来源于不同类型的细胞分泌的小囊泡被称作外泌体(Exosome),外泌体能够在细胞间转运核酸、蛋白质和脂质,并广泛分布在各种体液中,可以在细胞间进行物质交换和信息传递,调控机体生理病理过程[7-9]。外泌体蛋白质在生物的生殖发育过程中发挥着重要作用,如先前有研究表明外泌体相关蛋白在精子的成熟过程中起着不可或缺的作用[10]。十足目甲壳类动物的眼柄的X器官-窦腺复合体(X-organ-sinus gland complex)、AG和雄性生殖系统之间存在类似内分泌轴的关系[11],表明AG组织会受到来自其他组织分泌的因子的调控,因此对克氏原螯虾外泌体蛋白组的研究有助于我们了解其性别调控中可能会涉及到的因子。外泌体也被运用到猪、羊、鼠和家禽等动物的遗传育种中[12]。运用液相色谱和质谱及双向凝胶电泳等技术对外泌体进行蛋白质组学的分析,可以发现外泌体蛋白质可以在免疫和抗原递呈等多个生理病理过程中发挥作用[13]。武云慧等[14]采用非标记定量蛋白质组学技术成功从透析龄不同的患者的腹膜透析流出液(Peritoneal dialysis effluent,PDE)的外泌体中筛选出差异蛋白质,找到可能作为PD患者腹膜损伤的候选标志物。Fedele等[15]发现来自前列腺癌细胞的外泌体含有整合蛋白会促进前列腺细胞的迁移。因此,本研究对克氏原螯虾促雄性腺摘除前后血淋巴外泌体的蛋白质进行鉴定,筛选差异蛋白,以期能鉴定出涉及到克氏原螯虾性别调控的相关因子。

1 材料与方法

1.1 实验动物

实验所用的30只健康的雄性克氏原螯虾,体重为(32.54±4.63) g,来自华中农业大学水产养殖示范基地。克氏原螯虾的养殖在本实验室的室内养殖系统中完成,实验时间为2021年8月(水温24~26℃;pH 7~7.6;溶解氧8~11 mg/L;氨氮0~0.4 mg/L;亚硝酸盐0.005~0.01 mg/L)。投喂商品饲料,每日早晚2次,总投喂量约为其体重的2%。

1.2 促雄性腺的摘除以及摘除前后血淋巴外泌体蛋白组测序

促雄性腺的摘除是按照Barki等[16]描述的方法进行的。在促雄性腺摘除前和摘除后3 d(伤口基本愈合时),采集克氏原螯虾的血淋巴样品。用1 mL一次性无菌注射器抽取每只克氏原螯虾的血淋巴(约200~500 μL/只),并与等体积的ACD抗凝剂混合。将30只克氏原螯虾的血淋巴混合,然后在离心机中以1200 r/min、4℃离心10 min,并将上层血浆移入1.5 mL离心管。然后在离心机中以13000 r/min,4℃离心2 min,将上清液移入冷冻管中用液氮速冻1 h后储存在-80℃冰箱用于后续外泌体分离及测序。
外泌体的提取和测序是在上海派森诺生物技术有限公司进行的。其中外泌体分离采用超速离心法。采用Label-free非标记定量蛋白质组学技术研究外泌体的蛋白组。取分离得到的外泌体利用SDT缓冲液裂解和提取蛋白质,使用BCA法进行蛋白质定量。每个样品取适量蛋白质采用超滤管内酶解法(FASP)进行胰蛋白酶酶解,采用C18 Cartridge对酶解肽段进行脱盐,肽段冻干后加入40 μL Dissolution buffer复溶,肽段定量(OD280)。之后进行样品的液相色谱-串联质谱(LC-MS/MS)数据采集,每份样品采用纳升流速的HPLC液相系统进行分离,样品经色谱分离后用Q-Exactive质谱仪(Thermo Fisher)进行质谱分析。

1.3 生物信息学及数据分析

质谱测试原始文件(Raw File)用Maxquant软件(版本1.5.5.1)检索克氏原螯虾基因组数据库(GenBank:PRJNA727411),最后得到蛋白质鉴定及定量分析结果,按照表达倍数变化2倍以上(上调大于2倍或者下调小于0.5倍)的标准筛选差异表达蛋白质。对鉴定出的差异表达蛋白利用软件Omicsbean(http://www.omicsbean.cn/)进行GO(Gene Ontology)和KEGG(Kyoto Encyclopedia of Genes and Genomes)通路的注释和富集分析,并利用软件R version 3.5.1生成GO和KEGG富集分析气泡图。最后基于STRING(http://string-db.org/)数据库中的信息查找目标蛋白质之间的直接和间接相互作用关系进行蛋白质相互作用网络分析,生成相互作用网络并对网络进行分析。

2 结果与分析

2.1 外泌体差异蛋白组学分析

采用Label-free非标记定量蛋白质组学技术在克氏原螯虾血淋巴外泌体中一共鉴定到蛋白质469个,肽段数1474个。在克氏原螯虾促雄性腺摘除前后血淋巴外泌体中鉴定到差异表达蛋白质98个,98个差异表达蛋白质的聚类分析热图(Heat map)见图1。其中,差异表达下调的蛋白质有50个,差异表达上调的蛋白质有48个。
图1 克氏原螯虾促雄性腺摘除前后血淋巴外泌体的差异表达蛋白质聚类分析结果

图中纵坐标为在促雄性腺摘除前后血淋巴外泌体中表达量差异显著的蛋白质,每行代表一个蛋白质。横坐标为分组信息,每列代表一组样品,Q2表示促雄性腺摘除前血淋巴外泌体里的蛋白质,H2表示促雄性腺摘除后血淋巴外泌体里的蛋白质。在热图中,用不同颜色展现促雄性腺摘除前后血淋巴外泌体中差异表达显著的蛋白质的表达量的对数值,其中红色代表蛋白质含量相对较高,蓝色代表蛋白质含量相对较低。

Full size|PPT slide

对促雄性腺摘除前后外泌体中的蛋白质进行比较,发现在促雄性腺摘除前血淋巴外泌体的蛋白组(Q组)中能鉴定到,但在摘除促雄性腺之后血淋巴外泌体中(H组)没有鉴定到的蛋白有66个;其中在H组中能鉴定到,但在Q组没有鉴定到的蛋白有130个,包括与性别相关的卵黄蛋白原(Vitellogenin)。在表1中展示了6个分别在2个蛋白组中注释到的蛋白质氨基酸序列长度在1000 aa以上的蛋白。
表1 促雄性腺摘除前后2个外泌体蛋白组的部分差异蛋白质
蛋白ID 蛋白名称 序列长度/aa 备注
TRINITY_DN46360_c2_g2 Vitellogenin(卵黄蛋白原) 1592 H组有,
Q组没有的蛋白
TRINITY_DN45848_c0_g1 Neural-cadherin(神经钙粘蛋白) 3003
TRINITY_DN36934_c0_g1 Myosin-8(肌球蛋白-8) 1002 H组有,
Q组没有的蛋白
TRINITY_DN31439_c0_g3 Teneurin-m(跨膜蛋白-m) 2552
TRINITY_DN39238_c5_g6 Apolipophorins(载脂蛋白) 1771
TRINITY_DN41980_c0_g3 Glycogen debranching enzyme(糖原脱支酶) 1632
TRINITY_DN46185_c1_g1 Twitchin(颤搐蛋白) 6121 Q组有,
H组没有的蛋白
TRINITY_DN39783_c1_g2 Zinc finger homeobox protein 3(锌指同源盒蛋白3) 2320
TRINITY_DN30023_c2_g2 Zinc finger protein 423 homolog(锌指蛋白423同源物) 1171
TRINITY_DN33875_c0_g2 Agrin(集聚蛋白) 1575
TRINITY_DN39770_c1_g1 Histone-lysine N-methyltransferase SETD2(组蛋白赖氨酸N甲基转移酶SETD2) 1105
TRINITY_DN35993_c1_g1 RB1-inducible coiled-coil protein 1(RB1感应线圈蛋白1) 1464
注:Q表示促雄性腺摘除前外泌体里的蛋白质,H表示促雄性腺摘除后外泌体里的蛋白质。下同。

2.2 外泌体中差异表达蛋白的GO和KEGG富集分析

对98个差异表达蛋白质进行GO和KEGG富集分析后发现,差异表达蛋白富集在40条KEGG通路,1984个GO term中,前10个显著富集的KEGG通路和GO term如图2所示。其中富集到了2条与性别有关的通路:卵母细胞减数分裂(Oocyte meiosis)和孕激素介导的卵母细胞成熟(Progesterone-mediated oocyte maturation),由差异表达蛋白14-3-3 zeta和Cell division cycle protein 27 homolog分别富集到。在所有富集到的GO term中有28个与性别相关的GO term,如Oocyte meiosis、Progesterone-mediated oocyte maturation、Female gonad development、Development of primary female sexual characteristics和Gonad development等(表2)。这些GO term是由Teneurin-m、α2巨球蛋白(Alpha-1-macroglobulin)、超氧化物歧化酶(Superoxide dismutase [Cu-Zn])、AMP-activated protein kinase catalytic subunit alpha-1、14-3-3 zeta、神经胶质蛋白(Neuroglian)、Cell division cycle protein 27 homolog、纤维蛋白原α链(Fibrinogen alpha chain)和腺苷脱氨酶-2(Adenosine deaminase 2)等这8个被注释到的差异表达蛋白所富集到。在摘除促雄性腺后14-3-3 zeta和Cell division cycle protein 27 homolog(表3)发生差异表达且富集到了与性别相关的通路和GO term,说明这2个蛋白可能在调控克氏原螯虾性别方面起着一定的作用。
图2 外泌体中差异表达蛋白显著富集的前10个GO term(A)和KEGG通路(B)

Full size|PPT slide

表2 外泌体中差异表达蛋白质富集到的与性别相关的KEGG通路和GO term
编号 描述 分类
K16197/K03350 Oocyte meiosis(卵母细胞减数分裂) KEGG通路
K03350 Progesterone-mediated oocyte maturation(孕激素介导的卵母细胞成熟)
GO:0008585 Female gonad development(雌性性腺发育) GO term
GO:0046545 Development of primary female sexual characteristics(初级雌性性征发育)
GO:0008406 Gonad development(性腺发育)
GO:0007548 Sex differentiation(性分化)
GO:0045137 Development of primary sexual characteristics(初级性征的发展)
GO:0046660 Female sex differentiation(雌性性分化)
GO:0007565 Female pregnancy(雌性怀孕)
GO:0048608 Reproductive structure development(生殖结构发育)
GO:0061458 Reproductive system development(生殖系统发育)
GO:0008103 Oocyte microtubule cytoskeleton polarization(卵母细胞微管细胞骨架极化)
GO:0060180 Female mating behavior(雌性交配行为)
GO:0007309 Oocyte axis specification(卵母细胞轴规格化)
GO:0007308 Oocyte construction(卵母细胞的构建)
GO:0001541 Ovarian follicle development(卵泡发育)
GO:0030716 Oocyte fate determination(卵母细胞命运决定)
GO:2000242 Negative regulation of reproductive process(生殖过程的负调控)
GO:0048599 Oocyte development(卵母细胞发育)
GO:0035112 Genitalia morphogenesis(生殖器形态发生)
GO:0009994 Oocyte differentiation(卵母细胞分化)
GO:0046661 Male sex differentiation(雄性性分化)
GO:0090598 Male anatomical structure morphogenesis(雄性解剖结构的形态发生)
GO:0007314 Oocyte anterior/posterior axis specification(卵母细胞前/后轴规范化)
GO:0046546 Development of primary male sexual characteristics(初级雄性性征的发展)
GO:0032355 Response to estradiol(对雌二醇的反应)
GO:0048515 Spermatid differentiation(精细胞分化)
GO:0019098 Reproductive behavior(生殖行为)
GO:0007283 Spermatogenesis(精子生成)
GO:0045172 Germline ring canal(生殖系环管)
表3 14-3-3 zeta和Cell division cycle protein 27 homolog差异表达蛋白质信息
蛋白ID 蛋白名称 序列长度/aa 分子量/
kDa
非标记定量信号
强度-Q
非标记定量信号
强度-H
Ratio(H/Q) 表达量
上调或下调
TRINITY_DN31302_c2_g2 14-3-3 zeta 206 23.527 28304000 107000000 3.780384398 上调
TRINITY_DN37497_c4_g2 Cell division cycle
protein 27 homolog
806 89.33 8123000000 4587100000 0.564705158 下调
注:Q表示促雄性腺摘除前外泌体里的蛋白质,H表示促雄性腺摘除后外泌体里的蛋白质。

2.3 外泌体中差异表达蛋白的蛋白质相互作用网络分析(PPI)分析

使用STRING数据库对克氏原螯虾促雄性腺摘除前后血淋巴外泌体中差异表达蛋白进行分析,获得差异表达蛋白的互作关系如图3所示,其中关联度最高的是Glyceraldehyde-3-phosphate dehydrogenase(gapdh)、Actin, cytoplasmic 2(actb2)、Catalase(cat)和Fructose-bisphosphate aldolase, class i(aldoab)。其中能富集到性别相关通路的差异表达蛋白Cell division cycle protein 27 homolog(cdc27)与Ubiquitin C(ubb)相互作用。以上互作网络中关联度最高的蛋白质组分的具体信息如表4所示。
图3 克氏原螯虾促雄性腺摘除前后血淋巴外泌体中差异表达蛋白质相互作用网络

蛋白质互作网络中结点表示蛋白质,线表示蛋白质与蛋白质之间的相互作用。浅蓝线表示数据库注释;紫线表示实验确定的相互作用;绿线表示染色体上相近;红线表示基因融合;蓝线表示系统发育重合;黄绿色表示文本挖掘;黑线表示基因共同表达;浅紫线表示蛋白质同源。

Full size|PPT slide

表4 互作网络中关联度最高的蛋白质信息
蛋白ID String ID 首选名称 注释 表达量上调或下调
TRINITY_DN37497_c4_g2 7955.ENSDARP00000113979 cdc27 Cell division cycle 27 下调
TRINITY_DN36482_c3_g4 7955.ENSDARP00000089879 ubb Polyubiquitin-c; Ubiquitin C 下调
TRINITY_DN47205_c4_g1 7955.ENSDARP00000063799 gapdh 甘油醛-3-磷酸脱氢酶(Glyceraldehyde-3-phosphate dehydrogenase);同时具有甘油醛-3-磷酸脱氢酶和亚硝化酶的活性,从而分别在糖酵解和核功能中起作用。甘油醛-3-磷酸脱氢酶是糖酵解中的一个关键酶,还参与核事件,包括转录、RNA运输、DNA复制和细胞凋亡。 上调
TRINITY_DN31218_c2_g2 7955.ENSDARP00000122263 actb2 Actin, cytoplasmic 2;肌动蛋白(Actins)是高度保守的蛋白质,参与各种类型的细胞运动,在所有真核细胞中普遍表达。 上调
TRINITY_DN34937_c1_g1 7955.ENSDARP00000013402 cat 过氧化氢酶(Catalase);存在于几乎所有需氧呼吸的生物体中,用于保护细胞免受过氧化氢的毒性影响。 上调
TRINITY_DN33274_c1_g3 7955.ENSDARP00000042199 aldoab 果糖二磷酸醛缩酶,第一类(Fructose-bisphosphate aldolase, class i);属于第一类果糖二磷酸醛缩酶家族 上调

3 结论

对摘除促雄性腺前后外泌体中的蛋白组进行分析,发现14-3-3 zeta和Cell division cycle protein 27 homolog这2个外泌体中的差异表达蛋白可能参与了克氏原螯虾的性别调控,丰富了克氏原螯虾性别调控方面的相关研究。下一步将深入探究这2个蛋白在克氏原螯虾性别调控中所发挥的具体作用。

4 讨论

对克氏原螯虾性别决定和性别分化机制的了解是实现其单性育种的基础。促雄性腺是克氏原螯虾性别分化中的重要的组织[17]。Barki等[16]发现如果摘除十足目动物的促雄性腺,雄性动物会出现雌性化。在雌性红螯螯虾中植入促雄性腺,雌性第二性征的发展被抑制了,在表型和行为上表现出了雄性化[18]。而作为细胞之间通信以及遗传物质的重要转移载体,外泌体可以通过受体介导的相互作用直接刺激靶细胞,或通过转移各种生物活性分子,如脂质、蛋白质、mRNA以及不同的非编码RNA和miRNA,来发挥其生物功能[19-20]。外泌体中包含多种蛋白质,在不同组织不同细胞中蛋白质成分存在差异,不同种类的蛋白质使外泌体在机体内发挥不同的生物学功能[13]。AG不止受其他组织分泌的因子的调节,其自身的分泌产物本质上是蛋白质,在粗腿厚纹蟹(Pachygrapsus crassipes)AG的细胞质分泌囊泡中找到大量的蛋白质,且克氏原螯虾AG的超微结构支持蛋白质分泌的可能性[11]
因此,本研究对克氏原螯虾促雄性腺摘除前后血淋巴外泌体中蛋白质组进行测序以期能找到与克氏原螯虾性别调控相关因子。在促雄性腺摘除之后血淋巴外泌体中发现了卵黄蛋白原(Vitellogenin),而在促雄性腺摘除前血淋巴外泌体的蛋白组中未鉴定到。甲壳类动物卵巢发育的特点是在一个称为卵黄发生的过程中快速产生卵黄蛋白,卵黄发生是指卵黄蛋白原的合成[21],这说明了卵黄蛋白原在雌性性别发育方面的重要性。影响虾蟹雄性分化和维持雄性第二性征的AG[22]被摘除后在外泌体中鉴定到了卵黄蛋白原,结合摘除促雄性腺前后的差异表达蛋白能富集到与性别相关的KEGG通路和GO term(表2),再次表明了促雄性腺在雄性克氏原螯虾性别分化中的重要性,说明卵黄原蛋白可能在克氏原螯虾性别调控中起到重要作用。而其中外泌体内的差异表达蛋白14-3-3 zeta和Cell division cycle protein 27 homolog富集到与性别相关通路和GO term。14-3-3 zeta是一种14-3-3蛋白家族成员,14-3-3 zeta与多种神经系统疾病和信号通路有关,如抗14-3-3 zeta自身抗体可以作为预测肝癌发生的生物标志物[23-24]。本研究中差异表达蛋白14-3-3 zeta富集到了性别相关通路Oocyte meiosis中。Cell division cycle protein 27 homolog在早期胚胎发育和卵母细胞和精母细胞减数分裂以及生殖细胞的有丝分裂中发挥作用[25-26],说明Cell division cycle protein 27 homolog是一个与性别相关的蛋白,且在本研究中差异表达蛋白Cell division cycle protein 27 homolog富集到了Progesterone-mediated oocyte maturation这个性别相关通路中。表明这2个蛋白可能参与了克氏原螯虾的性别调控。

References

[1]
CHEN Y D, CHEN H, GONG F S, et al. A comparison of eating safety and quality of live and dead freshwater crayfish (Procambarus clarkii) at different stages[J]. Food research international, 2022, 159:111630.
[2]
HAMASAKI K, OSABE N, NISHIMOTO S, et al. Sexual dimorphism and reproductive status of the red swamp crayfish Procambarus clarkii[J]. Zoological studies, 2020, 59:e7.
[3]
LEVY T, NAOR A, SAGI A, et al. All-female monosex culture in the freshwater prawn Macrobrachium rosenbergii - A comparative large-scale field study[J]. Aquaculture, 2017, 479:857-862.
[4]
WANG H, SHI W J, WANG L G, et al. Genetic determination of processing traits in the red swamp crayfish, Procambarus clarkii (Girard)[J]. Aquaculture, 2020, 529:735602.
[5]
TROPEA C, HERMIDA G N, LÓPEZ GRECO L S. Effects of androgenic gland ablation on growth and reproductive parameters of Cherax quadricarinatus males (Parastacidae, Decapoda)[J]. General and comparative endocrinology, 2011, 174(2):211-218.
[6]
KATO M, HIRUTA C, TOCHINAI S. Androgenic Gland implantation induces partial masculinization in Marmorkrebs Procambarus fallax f. virginalis[J]. Zoological science, 2015, 32(5):459-464.
[7]
康瑾, 葛安, 薛凯凯, 等. HPV16 E6通过影响外泌体中β-联蛋白和紧密连接蛋白1表达促进宫颈癌细胞增殖、迁移和侵袭[J]. 中国生物化学与分子生物学报, 2023, 39(3):462-469.
为探讨人乳头瘤病毒16(human papillomavirus 16,HPV16)E6癌蛋白对宫颈癌细胞的生物学行为及外泌体中β-联蛋白(β-catenin)和紧密连接蛋白(claudin-1)表达的影响,本研究利用RNA干扰技术建立HPV16 E6敲低细胞模型(shE6组),通过CCK8试剂盒、流式细胞仪、划痕实验和Transwell实验对细胞增殖、细胞周期、迁移和侵袭特征进行检测,发现shE6相对于对照组(NC组),细胞增殖速率减慢、细胞周期阻滞在G<sub>0</sub>/G<sub>1</sub>期向S期的过渡阶段,细胞迁移能力显著降低,侵袭能力下降。同时提取细胞上清液中外泌体,利用Western印迹对β-联蛋白和紧密连接蛋白-1表达量进行检测,发现相对于NC组,shE6组细胞内β-联蛋白表达量减少,但外泌体中β-联蛋白量增加,紧密连接蛋白-1在细胞内和外泌体中均增加。上述结果提示,HPV16 E6促进细胞恶性表型可能与E6蛋白能够抑制β-联蛋白以外泌体形式释放,从而增加其在细胞内的积累,以及抑制紧密连接蛋白-1在细胞内和外泌体中的积累有关。
[8]
MATHIVANAN S, JI H, SIMPSON R J. Exosomes: Extracellular organelles important in intercellular communication[J]. Journal of proteomics, 2010, 73(10):1907-1920.
In addition to intracellular organelles, eukaryotic cells also contain extracellular organelles that are released, or shed, into the microenvironment. These membranous extracellular organelles include exosomes, shedding microvesicles (SMVs) and apoptotic blebs (ABs), many of which exhibit pleiotropic biological functions. Because extracellular organelle terminology is often confounding, with many preparations reported in the literature being mixtures of extracellular vesicles, there is a growing need to clarify nomenclature and to improve purification strategies in order to discriminate the biochemical and functional activities of these moieties. Exosomes are formed by the inward budding of multivesicular bodies (MVBs) and are released from the cell into the microenvironment following the fusion of MVBs with the plasma membrane (PM). In this review we focus on various strategies for purifying exosomes and discuss their biophysical and biochemical properties. An update on proteomic analysis of exosomes from various cell types and body fluids is provided and host-cell specific proteomic signatures are also discussed. Because the ectodomain of ~42% of exosomal integral membrane proteins are also found in the secretome, these vesicles provide a potential source of serum-based membrane protein biomarkers that are reflective of the host cell. ExoCarta, an exosomal protein and RNA database (http://exocarta.ludwig.edu.au), is described.Copyright © 2010 Elsevier B.V. All rights reserved.
[9]
YU X J, ODENTHAL M, FRIES J W. Exosomes as miRNA carriers: formation-function-future[J]. International journal of molecular sciences, 2016, 17(12):2028.
[10]
BASKARAN S, PANNER SELVAM M K, AGARWAL A. Exosomes of male reproduction[J]. Advances in clinical chemistry, 2020, 95:149-163
Exosomes are nanosized membrane vesicles secreted by wide variety of cells and found in abundance in biological fluids including semen. They contain cargo of lipids, proteins, microRNAs and mRNAs, and are known to play a major role in intracellular communication. Seminal exosomes mainly include epididymosomes and prostasomes. Most of the proteins associated with the epididymosomes are transferred to the sperm subcellular or membranous domains during their epididymal transit and are involved in the acquisition of fertilizing ability, modulation of motility and protection against oxidative stress. Proteins associated with prostasomes stimulate sperm motility and regulate the timing of capacitation to avoid premature induction of acrosome reaction. Furthermore, prostasomes protect the sperm from immune responses within the female reproductive tract. Overall, exosome-associated proteins play an indispensable role in maturation of spermatozoa and therefore, serve as an excellent biomarker in early diagnosis of male infertility.© 2020 Elsevier Inc. All rights reserved.
[11]
KHALAILA I, MANOR R, WEIL S, et al. The eyestalk-androgenic gland-testis endocrine axis in the crayfish Cherax quadricarinatus[J]. General and comparative endocrinology, 2002, 127(2):147-156
[12]
王佩仪, 刘贤, 张子敬, 等. 外泌体的生物学功能及其在动物遗传育种中的应用[J]. 中国畜牧兽医, 2021, 48(7):2539-2548.
外泌体是一种广泛存在于多种细胞间质中的囊泡,多种细胞在正常情况下或在细胞外刺激等应激条件下都能产生外泌体,来自不同细胞类型的外泌体作用机制及功能有很大区别。外泌体可通过膜蛋白与靶细胞膜蛋白结合、膜蛋白碎片与细胞膜上受体结合、膜与靶细胞膜直接融合等方式传递生物活性分子,从而参与机体免疫、细胞分化等过程。由于外泌体具有来源天然、穿越屏障能力好、生物相容性强等特点,在许多研究领域均受到广泛的关注。作者介绍了外泌体的形态特点、形成过程、作用机制、分离纯化、生物学特性、功能及应用;总结了近年来外泌体在畜禽研究中的应用。外泌体不仅可应用于动物遗传育种中,还可作为工具或载体来研究动物体内各种生化途径。该综述可为外泌体的相关研究及应用提供参考。
[13]
杨金鑫, 王海军, 赵永坤, 等. 外泌体的功能及其在临床应用中的研究进展[J]. 中国畜牧兽医, 2018, 45(12):3608-3613.
外泌体(exosome)是通过细胞内多泡体与细胞膜融合产生的纳米级细胞外膜泡,广泛分布在血清、尿液、唾液和其他生物液体中。外泌体作为细胞间通信和遗传物质的重要转移载体,可通过受体介导的相互作用或通过各种生物活性分子(如细胞膜受体、蛋白质、mRNA和miRNA)的转移直接刺激靶细胞,从而发挥其生物学功能。文章主要综述了外泌体内含蛋白质和miRNA的功能及外泌体在临床中的应用。外泌体内蛋白质和miRNA的功能包括生理状态下诱导机体免疫、递呈抗原、参与细胞间信号传导;病理状态下改变肿瘤微环境、促进癌细胞增殖、侵袭、加快血管生成、促进癌症发展;以及某些病毒可将其组分包装、整合到外泌体中来实现细胞间传播,或劫持外泌体,实现免疫逃避。作者主要介绍了其作为肺癌、乳腺癌、胰腺癌及结直肠癌等多种癌症早期诊断的生物性标志物,以及作为稳定性高、转运效率高、靶向性强的药物载体在临床中的应用。
[14]
武云慧, 黄抱娣, 茅春霞, 等. 非标记定量蛋白质组学技术探讨不同透析龄患者腹膜透析流出液外泌体差异蛋白的研究[J]. 南京医科大学学报(自然科学版), 2022, 42(8):1133-1141
[15]
FEDELE C, SINGH A, ZERLANKO B J, et al. The αvβ6 integrin is transferred intercellularly via exosomes[J]. Journal of biological chemistry, 2015, 290(8):4545-4551.
Exosomes, cell-derived vesicles of endosomal origin, are continuously released in the extracellular environment and play a key role in intercellular crosstalk. In this study, we have investigated whether transfer of integrins through exosomes between prostate cancer (PrCa) cells occurs and whether transferred integrins promote cell adhesion and migration. Among others, we have focused on the αvβ6 integrin, which is not detectable in normal human prostate but is highly expressed in human primary PrCa as well as murine PrCa in Pten(pc-/-) mice. After confirming the fidelity of the exosome preparations by electron microscopy, density gradient, and immunoblotting, we determined that the αvβ6 integrin is actively packaged into exosomes isolated from PC3 and RWPE PrCa cell lines. We also demonstrate that αvβ6 is efficiently transferred via exosomes from a donor cell to an αvβ6-negative recipient cell and localizes to the cell surface. De novo αvβ6 expression in an αvβ6-negative recipient cell is not a result of a change in mRNA levels but is a consequence of exosome-mediated transfer of this integrin between different PrCa cells. Recipient cells incubated with exosomes containing αvβ6 migrate on an αvβ6 specific substrate, latency-associated peptide-TGFβ, to a greater extent than cells treated with exosomes in which αvβ6 is stably or transiently down-regulated by shRNA or siRNA, respectively. Overall, this study shows that exosomes from PrCa cells may contribute to a horizontal propagation of integrin-associated phenotypes, which would promote cell migration, and consequently, metastasis in a paracrine fashion. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
[16]
BARKI A, KARPLUS I, MANOR R, et al. Intersexuality and behavior in crayfish: the de-masculinization effects of androgenic gland ablation[J]. Hormones and behavior, 2006, 50(2):322-331.
In crustaceans, male differentiation and primary and secondary characteristics are regulated by the androgenic gland (AG). In gonochoristic crustaceans, the AG is also linked to intersexuality. Whereas the co-occurrence of various male and female characteristics has been demonstrated in intersex crustaceans, little is known regarding sexually dimorphic behavior patterns in such individuals. In the present study, we used an intersex crayfish model to investigate--for the first time in crustaceans--the agonistic and mating behavior of intersex individuals, and to explore the effects of AG ablation on behavior, morphology and physiology. As was the case for their morphological and physiological reproductive traits, intersex individuals--despite being genotypically females--generally resembled males in terms of behavior: they engaged in fighting with males and copulated with receptive females. However, fighting durations of intersex animals were intermediate between those of males and females, and the durations of the copulations were remarkably short. Adult intersex individuals that had been AG ablated at the juvenile stage were unlikely to engage in fighting with males (similar behavior to females) and did not exhibit any mating behavior with receptive females. AG ablation resulted in feminine morphological and physiological shifts in the treated intersex individuals and enabled vitellogenin gene transcription and the onset of secondary vitellogenesis. It thus appears that an as-yet-unknown AG-secreted factor(s) regulating maleness also seems to regulate the organization of male behavior in crustaceans.
[17]
LEVY T, SAGI A. The “IAG-Switch”-A key controlling element in decapod crustacean sex differentiation[J]. Frontiers in endocrinology, 2020, 11:651.
[18]
KHALAILA I, KATZ T, ABDU U, et al. Effects of implantation of hypertrophied androgenic glands on sexual characters and physiology of the reproductive system in the female red claw crayfish, Cherax quadricarinatus[J]. General and comparative endocrinology, 2001, 121(3):242-249.
[19]
THÉRY C, ZITVOGEL L, AMIGORENA S. Exosomes: Composition, biogenesis and function[J]. Nature reviews immunology, 2002, 2(8):569-579.
[20]
PATIL A A, RHEE W J. Exosomes: Biogenesis, composition, functions, and their role in pre-metastatic niche formation[J]. Biotechnology and bioprocess engineering, 2019, 24(5):689-701.
[21]
LI Q, XIE J, HE L, et al. FOXL2 down-regulates vitellogenin expression at mature stage in Eriocheir sinensis[J]. Bioscience reports, 2015, 35(6):e00278.
[22]
ZHOU TT, WANG W, WANG Q C, et al. Insulin-like androgenic gland hormone from the shrimp Fenneropenaeus merguiensis: Expression, gene organization and transcript variants[J]. Gene, 2021, 782:145529.
[23]
CHEN F Y, CHEN L, LIANG W F, et al. Identification and confirmation of 14-3-3 ζ as a novel target of ginsenosides in brain tissues[J]. Journal of ginseng research, 2021, 45(4):465-472.
Ginseng can help regulate brain excitability, promote learning and memory, and resist cerebral ischemia in the central nervous system. Ginsenosides are the major effective compounds of Ginseng, but their protein targets in the brain have not been determined.We screened proteins that interact with the main components of ginseng (ginsenosides) by affinity chromatography and identified the 14-3-3 ζ protein as a potential target of ginsenosides in brain tissues.Biolayer interferometry (BLI) analysis showed that 20(S)-protopanaxadiol (PPD), a ginseng saponin metabolite, exhibited the highest direct interaction to the 14-3-3 ζ protein. Subsequently, BLI kinetics analysis and isothermal titration calorimetry (ITC) assay showed that PPD specifically bound to the 14-3-3 ζ protein. The cocrystal structure of the 14-3-3 ζ protein-PPD complex showed that the main interactions occurred between the residues R56, R127, and Y128 of the 14-3-3 ζ protein and a portion of PPD. Moreover, mutating any of the above residues resulted in a significant decrease of affinity between PPD and the 14-3-3 ζ protein.Our results indicate the 14-3-3 ζ protein is the target of PPD, a ginsenoside metabolite. Crystallographic and mutagenesis studies suggest a direct interaction between PPD and the 14-3-3 ζ protein. This finding can help in the development of small-molecular compounds that bind to the 14-3-3 ζ protein on the basis of the structure of dammarane-type triterpenoid.© 2021 The Korean Society of Ginseng. Publishing services by Elsevier B.V.
[24]
WANG T, HUANG X Y, ZHENG S J, et al. Serum anti-14-3-3 zeta autoantibody as a biomarker for predicting hepatocarcinogenesis[J]. Frontiers in oncology, 2021, 11:733680.
[25]
GOLDEN A, SADLER P L, WALLENFANG M R, et al. Metaphase to anaphase (mat) transition-defective mutants in Caenorhabditis elegans[J]. The journal of cell biology, 2000, 151(7):1469-1482.
[26]
SHAKES D C, SADLER P L, SCHUMACHER J M, et al. Developmental defects observed in hypomorphic anaphase-promoting complex mutants are linked to cell cycle abnormalities[J]. Development (Cambridge, England), 2003, 130(8):1605-1620.
Share on Mendeley
PDF(1915 KB)

Collection(s)

Rice

75

Accesses

0

Citation

Detail

Sections
Recommended

/