
Nitrogen Effect on Grain Bulging and Its Correlation with Grain Weight of Summer Soybean
CHENYuli, YANGPing, XURan, BIHaibin, GONGFajiang, WANGDongfeng, ZHUOMa, GAOMinghui
Nitrogen Effect on Grain Bulging and Its Correlation with Grain Weight of Summer Soybean
To quantitatively analyze the nitrogen effect on grain bulging and its correlation with grain weight of summer soybean, the field fixed-point experiment of different nitrogen application was conducted in 2020 and 2021 summer soybean growing seasons. The variation patterns of 100 grain weight and bulging rate of summer soybeans with bulging days under different nitrogen application levels, as well as the internal relationship between various bulging parameters and grain weight were analyzed systematically, and the nitrogen application effect of summer soybeans and its correlation with grain weight were clarified. The result showed that the 100-grain weight in different treatments showed a “Logistic” curve with the increase of grain bulging days; the grain bulging rate showed a “single peak” curve with the increase of grain bulging days. Excessive or deficient application of nitrogen could shorten the duration of bulging, and the average bulging rate was increased in a certain extent. There was a significant positive correlation between grain weight and the duration of bulging period of summer soybean, and a very significant positive correlation between the duration of fast-growing period and slow-growing period. However, the rate and duration of grain bulging were mainly determined by the rate and duration of grain bulging in the fast and slow growth stages. Nitrogen application could increase the grain weight of summer soybean, but excessive nitrogen application could inhibit the formation of grain weigh. Extending the duration of bulging, especially in the middle and late stages of bulging, was beneficial to the formation of grain weight.
summer soybean / grain bulging / nitrogen effect / grain weight / correlation {{custom_keyword}} /
表1 各处理参数值及统计检验 |
处理 | 参数 | F | ||
---|---|---|---|---|
K | a | b | ||
N0 | 29.111** | 42.823** | 0.164** | 1921.626** |
N40 | 29.439** | 39.087** | 0.159** | 2795.698** |
N80 | 29.695** | 38.347** | 0.160** | 1930.461** |
N120 | 30.713** | 37.942** | 0.145** | 1478.788** |
N160 | 31.225** | 32.301** | 0.142** | 1646.751** |
N200 | 30.092** | 46.853** | 0.153** | 7183.554** |
N240 | 30.259** | 36.115** | 0.144** | 1966.358** |
N280 | 28.658** | 46.697** | 0.159** | 691.627** |
注:**表示在P<0.01水平上显著差异。 |
表2 不同处理夏大豆鼓粒参数 |
处理 | Rmax/(g/d) | Tmax/d | R/(g/d) | T/d | R1/(g/d) | R2/(g/d) | R3/(g/d) | T1/d | T2/d | T3/d |
---|---|---|---|---|---|---|---|---|---|---|
N0 | 1.194 | 22.902 | 0.689 | 42.274 | 0.414 | 1.047 | 0.440 | 14.874 | 16.054 | 11.346 |
N40 | 1.167 | 23.115 | 0.682 | 43.154 | 0.420 | 1.023 | 0.430 | 14.811 | 16.607 | 11.736 |
N80 | 1.186 | 22.818 | 0.695 | 42.704 | 0.430 | 1.040 | 0.437 | 14.578 | 16.480 | 11.647 |
N120 | 1.115 | 25.038 | 0.655 | 46.921 | 0.406 | 0.978 | 0.411 | 15.969 | 18.135 | 12.817 |
N160 | 1.107 | 24.516 | 0.665 | 46.936 | 0.433 | 0.970 | 0.407 | 15.225 | 18.580 | 13.131 |
N200 | 1.154 | 25.077 | 0.657 | 45.793 | 0.386 | 1.012 | 0.425 | 16.492 | 17.168 | 12.133 |
N240 | 1.092 | 24.841 | 0.646 | 46.852 | 0.407 | 0.958 | 0.402 | 15.720 | 18.241 | 12.891 |
N280 | 1.143 | 24.101 | 0.651 | 44.028 | 0.382 | 1.002 | 0.421 | 15.843 | 16.514 | 11.671 |
表3 夏大豆鼓粒参数与百粒重的相关性分析 |
指标 | W | Rmax | Tmax | R | T | R1 | R2 | R3 | T1 | T2 | T3 |
---|---|---|---|---|---|---|---|---|---|---|---|
W | 1 | ||||||||||
Rmax | -0.662 | 1 | |||||||||
Tmax | 0.597 | -0.816* | 1 | ||||||||
R | -0.286 | 0.827* | -0.901** | 1 | |||||||
T | 0.808* | -0.927** | 0.931** | -0.795* | 1 | ||||||
R1 | 0.405 | 0.095 | -0.474 | 0.637 | -0.134 | 1 | |||||
R2 | -0.662 | 1.000** | -0.816* | 0.827* | -0.927** | 0.095 | 1 | ||||
R3 | -0.662 | 1.000** | -0.816* | 0.827* | -0.927** | 0.095 | 1.000** | 1 | |||
T1 | 0.217 | -0.518 | 0.890** | -0.857** | 0.663 | -0.804* | -0.518 | -0.518 | 1 | ||
T2 | 0.899** | -0.923** | 0.776* | -0.624 | 0.953** | 0.163 | -0.923** | -0.923** | 0.403 | 1 | |
T3 | 0.899** | -0.923** | 0.776* | -0.624 | 0.953** | 0.163 | -0.923** | -0.923** | 0.403 | 1.000** | 1 |
注:*和**分别表示在P<0.05和P<0.01水平上显著相关。 |
[1] |
李国清, 丛新军, 李国瑜, 等. 鲁中地区肥料与根瘤菌合理配施对大豆生长的影响[J]. 大豆科学, 2021, 40(5):682-687.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[2] |
丁娇, 韩晓增, 邹文秀, 等. 长期施肥对大豆生长状况及产量的影响[J]. 大豆科学, 2012, 31(5):778-783.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[3] |
Soybean [Glycine max (L.) Merr.] yield has increased during the past century; however, little is understood about the morphological parameters that have contributed most to yield gain. We conducted field studies to determine relationships between genetic gain of soybean yield and seeding rate. The hypothesis was newer cultivars would express higher yield than older cultivars when grown in higher plant populations. A total of 116 soybean cultivars equally representing Maturity Groups (MGs) II and III released over the last 80 yr were evaluated at high and low seeding rates in Wisconsin, Minnesota, Illinois, and Indiana. Seeding rates were 445,000 and 148,000 seeds ha−1 resulting in 311,000 and 94,000 plants ha−1 (high and low, respectively). Seed yield was greater for the high seeding rate vs. low seeding rate throughout all cultivars and years of release, but the difference was larger in newer cultivars. The differences observed primarily came from an increased number of pods and seeds plant−1. However, newer cultivars grown in low seeding rates increased per plant yield linearly by 0.118 (± 0.02)x– 208.0 g plant−1, where x = year‐of‐release, which was three times greater than at the high seeding rate. The greater yield trend came from seeds produced on plant branches. Therefore, newer cultivars produce more compensatory yield on plant branches under lower plant populations than older cultivars, so over the last 80 yr there has been a diminishing response to the expected yield penalty from reduced plant density.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[4] |
\nSoybean seed yield response to plant density is dependent on yield environment.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[5] |
田艺心, 高凤菊, 徐冉. 种植密度对高蛋白大豆经济性状和产量的影响[J]. 中国油料作物学报, 2017, 39(4):476-482.
为促进我国高蛋白大豆进一步推广利用,本文选用黄淮海地区高蛋白大豆品种冀豆21、冀豆12、荷豆12和齐黄34为试验材料,对不同种植密度下高蛋白大豆品种植株生长、干物质积累、品质和产量等经济性状进行了研究,结果表明,高蛋白大豆品种株高、主茎节数等植株生长性状均随密度增大而增大,但单株有效分枝数、有效荚数、单荚粒数及荚长等性状随密度增大逐渐减小。单株干物质重随密度增大而减少,但群体干物质重随密度增大先增大后减小;在22.5万株·hm-2~25.5万株·hm-2的密度范围内,高蛋白大豆的蛋白质含量随密度的升高而略有升高,而脂肪含量总量则随密度的升高而略有降低。品种产量随密度增大呈抛物线趋势,冀豆21和冀豆12高产的最佳密度是22.5万~25.5万株·hm-2,荷豆12和齐黄34高产的最佳密度是19.5~22.5万株·hm-2。这说明,适宜密度有利于高蛋白大豆植株生长及株型构建,进而促进干物质积累分配及籽粒产量的增加,该研究为黄淮海地区高蛋白大豆的推广利用提供了依据。
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[6] |
程彬, 刘卫国, 王莉, 等. 种植密度对玉米—大豆带状间作下大豆光合、产量及茎秆抗倒的影响[J]. 中国农业科学, 2021, 54(19):4084-4096.
【目的】阐明玉米-大豆带状间作下大豆植株冠层在不同种植密度下的光环境变化规律,明确种植密度对间作大豆叶片光合特性、产量形成及茎秆抗倒的影响,为构建寡日照地区间作大豆合理群体密度提供理论参考。【方法】本研究以大豆(川豆-16)和玉米(正红-505)为试验材料。采用双因素随机区组设计,主因素为种植方式,设玉米-大豆带状间作和大豆带状单作2个水平,副因素为大豆的3个种植密度(PD1=17株/m<sup>2</sup>,PD2=20株/m<sup>2</sup>,PD3=25株/m<sup>2</sup>),研究种植密度对间作大豆冠层内部光环境变化、叶片光合特性、植株生长动态、田间倒伏率及产量构成等的影响。【结果】2年结果表明,在玉米-大豆带状间作系统中,大豆生长中后期受高位作物玉米遮荫和自荫性增加的影响,其植株群体冠层内部的光合有效辐射(PAR)、叶面积指数(LAI)、叶片光合能力、分枝数及产量显著降低,但受玉米影响的程度因大豆种植密度的不同而不同。在间作模式下,PD1和PD2处理的大豆植株群体冠层光合有效辐射比PD3处理分别增加了45.4%和24.8%,净光合速率分别增加了46.1%和12.3%,单株有效荚数分别增加了53.2%和27.2%,单株分枝数分别增加了270.4%和140.9%,田间倒伏率分别降低了50.3%和19.3%。相关性分析发现,间作大豆的田间倒伏率与冠层内部光合有效辐射、叶片净光合速率、茎秆抗折力、茎叶干物质比、单株分枝数及单株有效荚数呈显著负相关,与株高、叶面积指数和单株无效荚数呈显著正相关。【结论】在玉米-大豆带状间作模式下,20株/m<sup>2</sup>的大豆密度(PD2)有利于创造良好的群体冠层内部光环境,降低植株田间大豆倒伏率,增加光合产物积累,从而提高大豆产量。
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[7] |
李瑞东, 徐彩龙, 尹阳阳, 等. 增密对少分枝大豆品种光合特性和产量形成的影响[J]. 大豆科学, 2021, 40(5):633-642.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[8] |
孙继颖, 高聚林, 吕小红. 施氮量对大豆抗旱生理特性及水分利用效率的影响[J]. 大豆科学, 2007, 26(4):517-522.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[9] |
杨芳, 汪媛媛, 何念, 等. 施氮量和种植密度对中豆44产量及主要农艺性状的影响[J]. 湖北农业科学, 2021, 60(11): 39-42.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[10] |
刘玉平, 李志刚, 李瑞平, 等. 不同密度与施氮水平对高油大豆产量及品质的影响[J]. 大豆科学, 2011, 30(1):79-82.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[11] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[12] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[13] |
董钻. 大豆产量生理[M]. 北京: 中国农业出版社, 2012,20-25.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[14] |
苏黎, 张仁双, 宋书宏, 等. 不同结荚习性大豆开花结荚鼓粒进程的比较研究[J]. 大豆科学, 1997, 16(3):52-59.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[15] |
卢城, 宫青涛, 陶雨佳, 等. 盛花期高温对大豆结荚及产量的影响[J]. 大豆科学, 2021, 40(4):504-509.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[16] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[17] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[18] |
江英泽, 董宇辰, 王文佳, 等. 鼓粒期干旱对春大豆品质和产量的影响[J]. 中国农学通报, 2019, 35(22):14-18.
为了给大豆生育后期合理灌溉提供一定的参考依据。试验在2016—2017年采用8个春大豆品种为材料,于收获后用Foss1241测定蛋白质和脂肪含量,并进行产量计算,以此探讨鼓粒期干旱对春大豆品质和产量的影响。结果表明,在鼓粒期干旱条件下,‘黑农37’蛋白质含量下降最为明显,而‘合丰46’变化最小;‘黑农61’脂肪含量升高最为明显,‘绥农29’脂肪含量升高幅度最小;‘黑农65’百粒重下降最为明显,‘黑农45’百粒重下降幅度最小;‘黑农65’产量降低幅度最大,而‘黑农44’、‘黑农37’和‘黑农45’产量降低幅度均较小。本试验表明,鼓粒期干旱会使大豆蛋白质含量下降,脂肪含量升高,百粒重下降,产量明显降低。
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[19] |
郝青南, 汪媛媛, 龙泽福, 等. DA-6对南方大豆品种性状、产量和品质的影响[J]. 大豆科学, 2021, 40(6):799-804.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[20] |
郑殿峰, 赵黎明, 于洋, 等. 植物生长调节剂对大豆花荚脱落及产量的影响[J]. 大豆科学, 2008, 27(5):783-786.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[21] |
刘春娟, 冯乃杰, 郑殿峰, 等. S3307和DTA-6对大豆叶片生理活性及产量的影响[J]. 植物营养与肥料学报, 2016, 22(3):626-633.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[22] |
赵婧, 邱强, 张鸣浩, 等. 低铁胁迫与大豆品种铁效率间的关系[J]. 中国农学通报, 2016, 32(30):49-55.
笔者以铁效率差异显著的铁高效和铁低效大豆品种为试验材料,旨在探明低铁胁迫与大豆品种铁效率间的关系。研究结果表明:通过主成分分析发现,地上部光能吸收因子和根系形态因子的贡献率最高,分别为41.0%和67.2%;根据这2个因子中绝对值较高的特征向量可以看出,提高光合作用以及根系表面积有助于提高大豆耐低铁能力。从Logistic方程动态模拟结果来看,铁高效品种的地上部和根系生长的V和V<sub>m</sub>均高于铁低效品种;低铁处理令铁低效品种根系到达V<sub>m</sub>的时间推后,而铁高效品种则通过提高根系V来抵抗低铁对生长所造成的伤害。但当铁浓度为0 mmol/L时,无论是铁高效品种还是铁低效品种地上部的V、V<sub>m</sub>和△t都较低,表明不同铁效率品种的划分是相对的,并不是绝对的,植物抵御胁迫的能力不仅是由自身特性所决定,与胁迫程度也是紧密相关的。
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[23] |
韩占江, 郜庆炉, 吴玉娥, 等. 小麦籽粒灌浆参数变异及与粒重的相关性分析[J]. 种子, 2008, 27(6):27-30.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[24] |
Soybean [Glycine max (L.) Merr.] area has increased tremendously in the upper Midwest over the last decade, but little information exists regarding the impact of management systems on soybean yield components. Our objective was to assess the effect of management system and planting date on soybean seed yield components and their development for environments typical of the upper Midwest. A field study was conducted from 1997 to 2000 using five management systems. Two newer released cultivars (CX232 and Spansoy 250) and one older cultivar (Hardin) were planted at two planting dates. Few interactions were observed in this study. Management system influenced development of the different yield components and produced seed mass ranging from 10.5 to 16.5 g 100 seed−1, seed number from 2878 to 3824 seeds m−2, pod number from 1182 to 1571 pods m−2, and seeds per pod from 2.36 to 2.49 seeds pod−1. Harvest index ranged from 56.2 to 58.0% across management systems. Hardin produced the highest harvest index (60.1%) and Spansoy 250 the lowest harvest index (54.5%). Tillage system affected yield components, with no‐tillage systems having 15, 9, and 9% greater seed mass, seed number per square meter, and pod number per square meter than the conventional tillage system, respectively. Early planting date produced higher seed number, pod number, and harvest index but lower seed number per pod than the late planting date. In conclusion, differences in yield components and their development emphasize the complexity of plant compensation in response to management system and tillage system.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[25] |
冯乃杰, 郑殿峰, 张玉先, 等. 化控种衣剂对大豆籽粒灌浆过程及产量形成的影响[J]. 中国农学通报, 2005, 21(7):334-337.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[26] |
杨升辉, 王素阁, 于会勇, 等. 接种根瘤菌对夏大豆籽粒灌浆特性及品质的影响[J]. 大豆科学, 2014, 33(4):534-540.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[27] |
陈传信, 唐江华, 陈佳君, 等. 种植方式对夏大豆鼓粒期叶片光合能力及籽粒灌浆特性的影响[J]. 干旱地区农业研究, 2018, 36(3):101-105.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[28] |
吴奇峰. 新疆春大豆籽粒发育生理的研究[D]. 石河子: 石河子大学. 2005.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[29] |
王程. 影响大豆籽粒粒重的生理生态因素[D]. 哈尔滨: 东北农业大学. 2009.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[30] |
常耀中. 大豆群体合理摆布与产量关系研究[J]. 大豆科学, 1983, 2(2):132-138.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |