
Study on Soil Properties and Their Variation Laws of Terraced Fields in Southern Zhejiang
XIA Jiaojiao, CHEN Yuhang, ZHANG Mingkui
Study on Soil Properties and Their Variation Laws of Terraced Fields in Southern Zhejiang
The complex and changeable terrain environments in mountainous areas lead to the unique change law of soil properties. To understand the temporal and spatial variation characteristics of cultivated land quality in mountainous area, 12 representative terraced fields in Lishui and Wenzhou of southern Zhejiang Province were selected, and 228 topsoil samples and 6 representative profiles were collected. The soil fertility indexes of the samples were analyzed. The relationships of soil fertility and soil types with land use type, altitude and slope position were discussed. The results showed that soil properties and soil types of terraced fields in southern Zhejiang had obviously spatial differentiation. With the increase of the altitude, the thickness of terraced soil body and tillage layer, the content of available phosphorus and available potassium gradually decreased, and the pH value gradually increased, but the soil organic matter, total nitrogen and CEC first decreased and then gradually increased from the foot to the slope upward. The soil quality of paddy field was higher than that of upland. The thickness of soil body and tillage layer, and the average content of organic matter, total nitrogen, CEC, pH, available phosphorus and available potassium of the soil in concave slope were higher than those in convex slope. And the fertility index became better with the increase of terrace width. The soil maturity degree of mountain terrace increased with the increase of plantation time. From low altitude to high altitude, the soil types changed from Fe-accumuli Stagnic Anthrosols and Hapli-Stagnic Anthrosols to Hapli-Stagnic Anthrosols and Fe-leached Stagnic Anthrosols.
terraced field / soil quality / altitude / slope position / time {{custom_keyword}} /
表1 各处理参数值及统计检验 |
处理 | 参数 | F | ||
---|---|---|---|---|
K | a | b | ||
N0 | 29.111** | 42.823** | 0.164** | 1921.626** |
N40 | 29.439** | 39.087** | 0.159** | 2795.698** |
N80 | 29.695** | 38.347** | 0.160** | 1930.461** |
N120 | 30.713** | 37.942** | 0.145** | 1478.788** |
N160 | 31.225** | 32.301** | 0.142** | 1646.751** |
N200 | 30.092** | 46.853** | 0.153** | 7183.554** |
N240 | 30.259** | 36.115** | 0.144** | 1966.358** |
N280 | 28.658** | 46.697** | 0.159** | 691.627** |
注:**表示在P<0.01水平上显著差异。 |
表2 不同处理夏大豆鼓粒参数 |
处理 | Rmax/(g/d) | Tmax/d | R/(g/d) | T/d | R1/(g/d) | R2/(g/d) | R3/(g/d) | T1/d | T2/d | T3/d |
---|---|---|---|---|---|---|---|---|---|---|
N0 | 1.194 | 22.902 | 0.689 | 42.274 | 0.414 | 1.047 | 0.440 | 14.874 | 16.054 | 11.346 |
N40 | 1.167 | 23.115 | 0.682 | 43.154 | 0.420 | 1.023 | 0.430 | 14.811 | 16.607 | 11.736 |
N80 | 1.186 | 22.818 | 0.695 | 42.704 | 0.430 | 1.040 | 0.437 | 14.578 | 16.480 | 11.647 |
N120 | 1.115 | 25.038 | 0.655 | 46.921 | 0.406 | 0.978 | 0.411 | 15.969 | 18.135 | 12.817 |
N160 | 1.107 | 24.516 | 0.665 | 46.936 | 0.433 | 0.970 | 0.407 | 15.225 | 18.580 | 13.131 |
N200 | 1.154 | 25.077 | 0.657 | 45.793 | 0.386 | 1.012 | 0.425 | 16.492 | 17.168 | 12.133 |
N240 | 1.092 | 24.841 | 0.646 | 46.852 | 0.407 | 0.958 | 0.402 | 15.720 | 18.241 | 12.891 |
N280 | 1.143 | 24.101 | 0.651 | 44.028 | 0.382 | 1.002 | 0.421 | 15.843 | 16.514 | 11.671 |
表3 夏大豆鼓粒参数与百粒重的相关性分析 |
指标 | W | Rmax | Tmax | R | T | R1 | R2 | R3 | T1 | T2 | T3 |
---|---|---|---|---|---|---|---|---|---|---|---|
W | 1 | ||||||||||
Rmax | -0.662 | 1 | |||||||||
Tmax | 0.597 | -0.816* | 1 | ||||||||
R | -0.286 | 0.827* | -0.901** | 1 | |||||||
T | 0.808* | -0.927** | 0.931** | -0.795* | 1 | ||||||
R1 | 0.405 | 0.095 | -0.474 | 0.637 | -0.134 | 1 | |||||
R2 | -0.662 | 1.000** | -0.816* | 0.827* | -0.927** | 0.095 | 1 | ||||
R3 | -0.662 | 1.000** | -0.816* | 0.827* | -0.927** | 0.095 | 1.000** | 1 | |||
T1 | 0.217 | -0.518 | 0.890** | -0.857** | 0.663 | -0.804* | -0.518 | -0.518 | 1 | ||
T2 | 0.899** | -0.923** | 0.776* | -0.624 | 0.953** | 0.163 | -0.923** | -0.923** | 0.403 | 1 | |
T3 | 0.899** | -0.923** | 0.776* | -0.624 | 0.953** | 0.163 | -0.923** | -0.923** | 0.403 | 1.000** | 1 |
注:*和**分别表示在P<0.05和P<0.01水平上显著相关。 |
[1] |
沈仁芳, 陈美军, 孔祥斌, 等. 耕地质量的概念和评价与管理对策[J]. 土壤学报, 2012, 49(6):1210-1212.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[2] |
徐明岗, 卢昌艾, 张文菊, 等. 我国耕地质量状况与提升对策[J]. 中国农业资源与区划, 2016, 37(7):8-14.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[3] |
陈印军, 肖碧林, 方琳娜, 等. 中国耕地质量状况分析[J]. 中国农业科学, 2011, 44(17):3557-3564.
耕地质量是耕地土壤质量、耕地环境质量、耕地管理质量和耕地经济质量的总和。中国耕地质量总体偏低,中等和低等地共占耕地总面积的2/3以上。中国耕地质量变化态势如何,目前没有统一的认识,较为普遍的看法是中国耕地质量总体水平趋于下降,但农田土壤监测结果表明中国耕地土壤肥力指标总体上呈稳中有升的趋势。论文的分析结果表明,中国耕地质量总体上向好的方向发展,但耕地部分质量要素和局部区域耕地质量恶化问题突出。
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[4] |
付国珍, 摆万奇. 耕地质量评价研究进展及发展趋势[J]. 资源科学, 2015, 37(2):226-236.
当前我国耕地面临粮食保障与耕地严重撂荒、耕地保护与普遍“占优补劣”、农产品安全与土壤环境污染等诸多现实矛盾,针对新问题的耕地质量评价工作亟待开展。本文在梳理现有耕地质量评价研究的基础上,探讨了耕地质量的内涵及概念;总结了针对农业生产能力、耕地潜力、土地适宜性、土壤及环境质量、可持续利用、分等定级等的耕地质量评价方法;综述了已有研究在国家、区域、地块三个尺度的进展;提出了耕地质量评价重点转移、结合农户视角的综合评价、时空变化监测网络构建以及基于地理信息系统(GIS)和遥感(RS)的标准化评价四个发展方向,以期为耕地质量评价理论提升及实践应用提供新的思路。
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[5] |
张蚌蚌, 孔祥斌, 郧文聚, 等. 我国耕地质量与监控研究综述[J]. 中国农业大学学报, 2015, 20(2):216-222.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[6] |
郝丽婷. 黄土丘陵沟壑区坝地和梯田土壤肥力变化特征[D]. 杨凌: 西北农林科技大学, 2019.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[7] |
包耀贤. 黄土高原坝地和梯田土壤质量特征及评价[D]. 杨凌: 西北农林科技大学, 2008.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[8] |
全国农业技术推广服务中心. 耕地质量演变趋势研究[M]. 北京: 中国农业科技出版社, 2008:1-15.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[9] |
杨建峰, 孙燕, 王华, 等. 中国南方红壤地区土壤质量评价研究进展[J]. 热带农业科学, 2008, 28(6):92-95.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[10] |
王伯仁, 李冬初, 周世伟. 红壤质量演变与培肥技术[M]. 北京: 中国农业科学技术出版社, 2015.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[11] |
岳自慧, 刘平, 翟汝伟, 等. 宁南山区不同建设年限梯田土壤肥力变化规律研究[J]. 中国水土保持, 2019(2):50-53,69.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[12] |
陈桂香, 王维奇, 曾从盛. 联合梯田不同海拔稻田土壤养分及其生态化学计量比分布特征[J]. 福建师范大学学报(自然科学版), 2017, 33(1):60-67.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[13] |
马菁, 宋维峰. 元阳梯田水源区土壤水分动态变化规律研究[J]. 生态科学, 2016, 35(2):33-43.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[14] |
马菁, 宋维峰, 张娟, 等. 元阳梯田水源区不同坡位土壤水分变化研究[J]. 亚热带水土保持, 2015, 27(3):21-28.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[15] |
邱宇洁, 许明祥, 师晨迪, 等. 土丘陵区坡改梯田土壤有机碳累积动态[J]. 植物营养与肥料学报, 2014, 20(1):87-98.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[16] |
南雅芳, 郭胜利, 张彦军, 等. 坡向和坡位对小流域梯田土壤有机碳、氮变化的影响[J]. 植物营养与肥料学报, 2012, 18(3):595-601.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[17] |
鲍士旦. 土壤农化分析[M]. 北京: 中国农业科技出版社, 1999:50-150.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |