
Research Progress of Alternative Splicing in Plants
XU Yue, WANG Xi, SHEN Zimeng
Research Progress of Alternative Splicing in Plants
Alternative splicing is widespread in plants and is the main source of transcriptome and proteome diversity in organisms. With the development of science and technology, the research methods of alternative splicing have gradually become simple, convenient and efficient, and more and more alternative splicing events have been discovered in plants. The article mainly introduces the mechanism and research methods of alternative splicing in plants, as well as the latest research progress of alternative splicing in several plants, and puts forward suggestions on the research direction in the future.
mRNA / alternative splicing / plant / Arabidopsis / soybean / single molecule sequencing technology {{custom_keyword}} /
[1] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[2] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[3] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[4] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[5] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[6] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[7] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[8] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[9] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[10] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[11] |
李稚锋, 王正志, 张成岗. 真核基因可变剪接研究现状与展望[J]. 生物信息学, 2004(2):35-38.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[12] |
林鲁萍, 马飞, 王义权. 基因选择性剪接的生物信息学研究概况[J]. 遗传, 2005(6):145-150.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[13] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[14] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[15] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[16] |
With the availability of a nearly complete sequence of the human genome, aligning expressed sequence tags (EST) to the genomic sequence has become a practical and powerful strategy for gene prediction. Elucidating gene structure is a complex problem requiring the identification of splice junctions, gene boundaries, and alternative splicing variants. We have developed a software tool, Transcript Assembly Program (TAP), to delineate gene structures using genomically aligned EST sequences. TAP assembles the joint gene structure of the entire genomic region from individual splice junction pairs, using a novel algorithm that uses the EST-encoded connectivity and redundancy information to sort out the complex alternative splicing patterns. A method called polyadenylation site scan (PASS) has been developed to detect poly-A sites in the genome. TAP uses these predictions to identify gene boundaries by segmenting the joint gene structure at polyadenylated terminal exons. Reconstructing 1007 known transcripts, TAP scored a sensitivity (Sn) of 60% and a specificity (Sp) of 92% at the exon level. The gene boundary identification process was found to be accurate 78% of the time. also reports alternative splicing patterns in EST alignments. An analysis of alternative splicing in 1124 genic regions suggested that more than half of human genes undergo alternative splicing. Surprisingly, we saw an absolute majority of the detected alternative splicing events affect the coding region. Furthermore, the evolutionary conservation of alternative splicing between human and mouse was analyzed using an EST-based approach. (See http://stl.wustl.edu/~zkan/TAP/)
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[17] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[18] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[19] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[20] |
付畅, 黄宇. 转录组学平台技术及其在植物抗逆分子生物学中的应用[J]. 生物技术通报, 2011(6):40-46.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[21] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[22] |
章天骄. 可变剪接的生物信息数据分析综述[J]. 生物信息学, 2012, 10(1):61-64.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[23] |
崔凯, 吴伟伟, 刁其玉. 转录组测序技术的研究和应用进展[J]. 生物技术通报, 2019, 35(7):1-9.
转录组(Transcriptome)是指特定细胞或组织中全部转录产物,包括信使RNA,核糖体RNA、转运RNA以及非编码RNA。高通量测序技术的快速发展,为从整体水平系统地研究转录组学研究提供快捷可靠的平台。综述了当前主流的高通量测序技术及其在转录组学研究中的应用,并讨论了转录组数据分析中一些值得关注的问题,以及转录组测序技术在生物学研究中的应用方向。
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[24] |
张丁予, 章婷曦, 王国祥. 第二代测序技术的发展及应用[J]. 环境科学与技术, 2016, 39(9):96-102.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[25] |
高阳, 薛大伟, 钱前, 等. 二代测序技术在水稻基因组学和转录组学研究中的应用[J]. 中国水稻科学, 2015, 29(2):208-214.
二代测序技术是测序技术的一次革命性突破,它具有高通量、高精度、低成本的优势,为水稻基因组学研究提供了新的研究方法和解决方案。概述了以使用合成法测序和连接法测序为原理的二代测序技术的特点和发展,并总结了其在水稻基因组学,包括结构基因组学和功能基因组学以及转录组学研究中的应用,并就当前测序技术的发展趋势作了展望。
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[26] |
俞晓玲, 姜文倩, 郑玲, 等. 单分子测序技术及应用研究进展[J]. 生物化学与生物物理进展, 2020, 47(1):5-16.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[27] |
曹晨霞, 韩琬, 张和平. 第三代测序技术在微生物研究中的应用[J]. 微生物学通报, 2016, 43(10):2269-2276.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[28] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[29] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[30] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[31] |
郭小勤, 李德葆. 植物前体mRNA的选择性剪接[J]. 农业生物技术学报, 2006(5):809-815.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[32] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[33] |
邢永强, 何泽学, 刘国庆, 等. 拟南芥不同组织基因表达及可变剪接差异分析[J]. 生物化学与生物物理进展, 2019, 46(11):1118-1129.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[34] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[35] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[36] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[37] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[38] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[39] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[40] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[41] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[42] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[43] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[44] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[45] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[46] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[47] |
肖燕, 姚珺玥, 刘冬, 等. 甘蓝型油菜响应低氮胁迫的表达谱分析[J]. 作物学报, 2020, 46(10):1526-1538.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[48] |
韩林宏, 江海洋. 植物选择性剪接研究进展[J]. 分子植物育种, 2020, 18(10):3259-3265.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[49] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |