Spatial Distribution Characteristics of Soil Fertility in Township Scale of Shandong Province

PDF(2684 KB)
PDF(2684 KB)
Journal of Agriculture ›› 2018, Vol. 8 ›› Issue (12) : 47-53. DOI: 10.11923/j.issn.2095-4050.cjas18110010

Spatial Distribution Characteristics of Soil Fertility in Township Scale of Shandong Province

Author information +
History +

Abstract

The soil fertility indicators on the township scale can embody the local basic soil fertility, and can also guide scientific fertilization effectively. The spatial distribution of soil fertility in 1504 agricultural towns of Shandong Province was studied by principal component analysis and spatial cluster analysis. The results showed that: (1) the content of organic matter, total nitrogen, available phosphorus and available potassium was (12.93±0.1) g/kg, (0.87±0.01) g/kg, (31.89±0.51) mg/kg and (128.64±1.48) mg/kg, respectively, based on the comprehensive score of soil quality, the soil fertility of each township in Shandong Province was divided into three categories: fertile, moderate and barren, accounting for 14.20% , 46.67% and 39.13% , respectively; conclusively, the quality of soil fertility in Shandong was at a lower level, and the proportion of middle and below was 85.8%; (2) the spatial distribution of soil fertility in Shandong increased first and then decreased from north to south, increased and then reduced from west to east; the region with relatively high soil fertility was centered on the central part, with divergence and ring-like distribution; via the central part of Weifang City, Zibo City, the northeast and southeast of Linyi City, the junction of the west of Zaozhuang City and Jining City, constituted a S-type; the southeastern Shandong peninsula had low soil coefficient, organic matter and available potassium were the main limiting factors, and the main reason for the lower soil fertility grade in the south- central, southwestern and southeastern regions were the low content of available phosphorus and available potassium; total nitrogen and available phosphorus were the main limiting factors of soil fertility in the northwest and northern regions. The results of this study have guiding significance for the targeted formulation of soil fertility improvement programs appropriate for different regions of Shandong Province.

Key words

Township Scale; Soil Fertility; Spatial Distribution; Abundance and Deficiency

Cite this article

Download Citations
Spatial Distribution Characteristics of Soil Fertility in Township Scale of Shandong Province. Journal of Agriculture. 2018, 8(12): 47-53 https://doi.org/10.11923/j.issn.2095-4050.cjas18110010

References

[1] 吴占景,饶碧玉,罗绍芹,等.不同土壤肥力对当归品质和产量的影响[J].南方农业学报,2011,42(11):1361-1364.
[2] 刘少春,张跃彬,郭家文,等.基于养分丰缺分级的蔗田土壤肥力主成分综合分析[J].西南农业学报,2016,29(03):611-617.
[3] Martin Yemefack, Jetten V G, Rossiter D G. Developing a minimum data set for characterizing soil dynamics in shifting cultivation systems[J]. Soil & amp; Tillage Research, 2006,86(1):84-98.
[4] 王恒旭,胡永华,王文成,等.主成分分析在杞县大蒜种植区土壤质量评价中的应用[J].中国农学通报,2006(8):297-301.
[5] 张志坚,刘苑秋,吴春生,等.基于地统计学和GIS的江西省森林土壤养分空间分布特征[J].水土保持研究,2018,25(1):38-46.
[6] Kumar M V, Saliha B, Kannan P. African Journal of Agricultural Research Delineation and geographic information system (GIS) mapping of soil nutrient status of sugarcane growing tracts of Theni district, Tamil Nadu[J]. African Journal of Agricultural Research, 2015, 10(33):3281-3291.
[7] 陈卫国,吕春娟,刘秀珍,等.坝地土壤养分的空间变异性研究[J].土壤通报,2015,46(4):829-836.
[8] 赵凯,黄露,王彦文,等.山东省泰安市28个桑园的土壤肥力数值化综合评价[J].蚕业科学,2012,38(4):587-595.
[9] 张连金,赖光辉,孔颖,等.基于因子分析法的北京九龙山土壤质量评价[J].西北林学院学报,2016,31(3):7-14.
[10] 赵业婷.基于GIS的陕西省关中地区耕地土壤养分空间特征及其变化研究[D].陕西:西北农林科技大学,2015.
[11] 张瑞.北京近郊耕地土壤性质空间变异性研究及肥力综合评价[D].北京:北京林业大学,2015.
[12] 郭安廷,崔锦霞,许鑫,等.基于GIS与地统计的土壤养分空间变异研究[J].中国农学通报,2018,34(23):72-79.
[13] 杨美玲,王雪梅,罗梦媛.基于GIS的库车县耕层土壤养分空间变异研究[J].水土保持研究,2015,22(1):61-65.
[14] 温延臣,李燕青,袁亮,等.长期不同施肥制度土壤肥力特征综合评价方法[J].农业工程学报,2015,31(7):91-99.
[15] 杨晓娟,王海燕,刘玲,等.东北过伐林区不同林分类型土壤肥力质量评价研究[J].生态环境学报,2012,21(9):1553-1560.
[16] 王璐,王海燕,何丽鸿,等.基于GIS的土壤肥力质量综合评价——以天然云冷杉针阔混交林为例[J].土壤通报,2016,47(5):1223-1230.
[17] K Prabhavati, Dasog G S, Patil P L, et al. Soil Fertility Mapping using GIS in Three Agro-climatic Zones of Belgaum District, Karnataka[J]. Journal of the Indian Society of Soil Science, 2015, 63(2):173-180.
[18] 唐秀美,潘瑜春,秦元伟,等.滨海集约农区耕地质量演变趋势研究——以山东省广饶县为例[J].自然资源学报,2013,28(2):277-286.
[19] 张玲娥.典型县域耕地肥力质量时空演变规律及驱动力分析[D].北京:中国农业大学,2014.
[20] 李娟,章明清,尤志明,等.福建乌龙茶园土壤速效氮磷钾丰缺指标与肥力状况评价[J].茶叶学报,2018,59(1):19-25.
[21] 周伟,王文杰,张波,等.长春城市森林绿地土壤肥力评价[J].生态学报,2017,37(4):1211-1220.
[22] 厉彦玲,赵庚星.黄河三角洲典型地区耕地土壤养分空间预测[J].自然资源学报,2018,33(3):489-503.
[23] 廖超林,傅灵艺,张鹏博,等.湘中南土地整理后烟田土壤肥力指标评价及空间变异特征[J].水土保持研究,2017,24(2):105-111.
[24] 吴海燕,金荣德,范作伟,等.基于主成分和聚类分析的黑土肥力质量评价[J].植物营养与肥料学报,2018,24(2):325-334.
[25] 赵明松,张甘霖,王德彩,等.徐淮黄泛平原土壤有机质空间变异特征及主控因素分析[J].土壤学报,2013,50(1):1-11.
[26] 张水清,黄绍敏,郭斗斗.主成分分析在潮土土壤肥力评价中的应用[J].河南农业科学,2011,40(4):82-86.
[27] 亢宁. 山东省耕地土壤养分数据库建立及其分异特征分析[D].山东:山东农业大学,2017,23-25.
[28] 王立华,孙磊,苏群,等.山东省耕地土壤养分及酸碱状况调查分析[J].现代农业科技,2016(1):244-245+247.
[29] 陈欢,曹承富,张存岭,等.基于主成分-聚类分析评价长期施肥对砂姜黑土肥力的影响[J].土壤学报,2014,51(3):609-617.
[30] 汪晓燕,郭熙,赵小敏.近30年江西省耕地肥力质量时空演变规律[J].江苏农业科学,2018,46(6):284-288.
[31] 王建宇,王超,王菲,等.基于田间尺度的压砂地土壤肥力评价[J].土壤通报,2015,46(1):36-41.
Share on Mendeley
PDF(2684 KB)

Accesses

Citation

Detail

Sections
Recommended

/