To understand the effects of topography on the spatial distribution of diagnostic features and soil types of Stagnic Anthrosols and to construct the relationships between landscape and the soil types and related diagnostic horizons and diagnostic characteristics, 254 soil profiles were observed in the river network plain, coastal plain, valley plain, hilly and mountain area, and valley area of Zhejiang province, the relationships between soil types of stagnic Anthrosols, corresponding diagnostic horizons and diagnostic characteristics and topography, elevation, slope and the micro-topography were explored. The results showed that topographic conditions could change the status and migration characteristics of soil moisture, and were the main factors that affected the differentiation of soil types of stagnic Anthrosols, and it played a decisive role in formation of the Fe-accumulated horizon, Fe-leached horizon, and gleyic features of stagnic Anthrosols. The investigation showed that the typical landforms of Fe-accumuli- stagnic Anthrosols were river valley plain, highland of the river network plain, alluvial fan, the hilly slope land, and the junction area of the coastal plain and the river network plain, those of the gleyi stagnic Anthrosols were depression of the river network plain, the center of the land surrounded by lake, transition area of river valley plain and hilly, and mountain ridge, and those of the Fe-leachi-stagnic Anthrosols were slope hilly and highland of flood plain. The occurrence frequency of gleyic fertures decreased with the decreasing groundwater level. The Fe-accumulated horizon mainly occurred in stagnic Anthrosols with 60-120cm underground water level, while the occurrence frequency of Fe-leached horizon increased with the decreasing groundwater level. The depth and thickness of Fe-accumulated horizon were relatively stable in space, and those of gleyi feature and Fe-leached horizon could be changed greatly in space. The spatial variation scale of the related diagnostic layers in the river network plain was larger, and that of the main diagnostic horizon in the river valley plain was smaller. The main diagnostic horizon / diagnostic characteristics in the hilly and mountain region (including the valley) could be mutated in a short distance. It was thought that formation of albic horizon in the stagnic Anthrosols might be related to the geological effect.
Key words
Stagnic Anthrosols; diagnostic horizon; diagnostic characteristics; topographic conditions.
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
References
[1]全国土壤普查办公室.中国土壤普查技术[M].北京:农业出版社,1992,704-771.
[2]赵其国,龚子同.土壤地理研究法[M].北京:科学出版社,1989,1-30.
[3]章明奎.土壤地理学与土壤调查技术[M].北京:中国农业科学技术出版社,2011,280-307.
[4]全国土壤普查办公室.中国土壤[M].北京:中国农业出版社,1995,1-50.
[5]龚子同,张甘霖.中国土壤系统分类:我国土壤分类从定性向定量的跨越[J].中国科学基金,2006(5):293-296.
[6]孙福军,雷秋良,刘颖,李华蕾,王秋兵.数字土壤制图技术研究进展与展望[J].土壤通报,2011,42(6):1502-1507.
[7]中国科学院南京土壤研究所土壤分类课题组,中国土壤系统分类课题协作组.中国土壤系统分类(首次方案)[M].北京:科学出版社,1991.
[8]中国科学院南京土壤研究所土壤系统分类课题组,中国土壤系统分类检索(第三版)[M].合肥:中国科学技术大学出版社,2001.
[9]潘剑君.土壤调查与制图(第三版)[M].北京:中国农业出版社,2010,50-80.
[10]赵其国.我国土壤调查制图及土壤分类工作的回顾与展望[M].土壤,1992,24(6):281-284.
[11]张甘霖,史学正,龚子同.中国土壤地理学发展的回顾与展望[M].土壤学报,2008,45(5):792-799.
[12]檀满枝,陈杰.模糊逻辑在土壤连续分类和制图表达中的应用及展望[J].土壤学报,2009,46(1):136-143.
[13]McBratney A B , Mendona Santos M L, Minasny B .On digital soil mapping[J].Geoderma, 2003(1/2), 117 :3-52.
[14]张庆利.美国基于GIS、专家系统和模糊推断的土壤制图方法[J].水土保持科技情报,2002(2):1-5.
[15]朱阿兴,李宝林,杨 琳,等.基于GIS、模糊逻辑和专家知识的土壤制图及其在中国应用前景[J].土壤学报,2005,42(5):844-851.
[16]江净超,朱阿兴,秦承志,等.CyberSoLIM:基于知识驱动的在线数字土壤制图原型系统[J].土壤学报,2013,50(6):1216-1220.
[17]许瑞芬,侯淑涛,朱永福.基于遥感专家分类系统的土壤信息提取与识别[J].中国科技博览,2009,178-179.
[18]杨琳,朱阿兴,李宝林,秦承志,裴韬,刘宝元,李润奎,蔡强国.应用模糊c均值聚类获取土壤制图所需土壤-环境关系知识的方法研究[J].土壤学报,2007,44(5):785-791.
[19]张华,张甘霖,龚子同.土壤-景观定量模型研究进展[J].土壤通报,2004,35(3):339-346.
[20]杨志强,潘剑君,黄礼辉,等.面向土壤系统分类的土壤调查剖面点设置与界线确定研究-以江苏省句容市大卓村为例[J].南京农业大学学报,2011,34(3):94-100.
[21]孙孝林,赵玉国,秦承志,等.DEM栅格分辨率对多元线性土壤-景观模型及其制图应用的影响[J].土壤学报, 2008,45(5):971-977.
[22]赵量,赵玉国,李德成,等.基于模糊集理论提取土壤-地形定量关系及制图应用[J].土壤学报,2007, 44(6):961-967.
[23]杨志强,潘剑君,黄礼辉,等.面向土壤系统分类的土壤调查制图方法的初步研究[J].土壤,2010,42(5):842-848.
[24]朱莲青,马溶之,宋达泉.1938.水稻土层分类命名概则[J].土壤特刊,乙种4号,1938,85-91.
[25]龚子同,张甘霖.人为土研究的新趋势[J].土壤,1998,30(1):54-56.
[26]浙江省土壤普查办公室.浙江土壤[M].杭州:浙江省科学技术出版社,1993,266-390.
[27]杜国华,张甘霖,龚子同.长江三角洲水稻土主要土种在中国土壤系统分类中的归属[J].土壤,2007,39(5):684-691.
[28]中国科学院南京土壤研究所土壤系统分类课题组.土壤野外描述、水热动态观测方法及土壤信息系统(中国土壤系统分类用)[M]. 北京: 科学出版社,1991.
[29]于天仁,陈志诚.土壤发生中的化学过程[M].北京:科学出版社,1990,132-148.
[30]张甘霖,龚子同.氧化还原形态特征模式与形成机理解析[M].土壤学进展,1994,22(3):49-50.
{{custom_fnGroup.title_en}}
Footnotes
{{custom_fn.content}}