
农业轮式机器人三维环境感知技术研究进展
Three-Dimensional Environment Perception Technology for Agricultural Wheeled Robots: A Review
[目的/意义]作为未来农机装备的研究重点,农业轮式机器人正向着智能化与多功能化的方向发展。三维环境感知技术因其获取的信息量丰富、复杂环境下的鲁棒性和适应性好,成为了农业轮式机器人智能化无人作业的基础与关键,其发展水平直接影响到包括农业轮式机器人在内的无人农机的作业质量与效率。[进展]本文首先总结了农业轮式机器人和农业环境感知技术的发展现状,分析了不同类型农业轮式机器人的使用特点和应用现状。其次分析了在农业轮式机器人上实现三维环境感知所主要使用的感知设备及其对应的关键技术,重点阐述了基于激光雷达、视觉传感器和多传感器融合的农业轮式机器人三维环境感知技术的研究进展。[结论/展望]结合农业作业特点与实际需求,指出了农业轮式机器人三维环境感知技术在适用性、环境信息处理和感知效果等方面存在的一些问题,并提出了提升传感器的农业适用性、发展基于深度学习的农业环境感知技术、发展智能化的高速在线多传感器信息融合技术三个方面的建议,以期为农业轮式机器人三维环境感知技术发展提供参考与借鉴。
[Significance] As the research focus of future agricultural machinery, agricultural wheeled robots are developing in the direction of intelligence and multi-functionality. Advanced environmental perception technologies serve as a crucial foundation and key components to promote intelligent operations of agricultural wheeled robots. However, considering the non-structured and complex environments in agricultural on-field operational processes, the environmental information obtained through conventional 2D perception technologies is limited. Therefore, 3D environmental perception technologies are highlighted as they can provide more dimensional information such as depth, among others, thereby directly enhancing the precision and efficiency of unmanned agricultural machinery operation. This paper aims to provide a detailed analysis and summary of 3D environmental perception technologies, investigate the issues in the development of agricultural environmental perception technologies, and clarify the future key development directions of 3D environmental perception technologies regarding agricultural machinery, especially the agricultural wheeled robot. [Progress] Firstly, an overview of the general status of wheeled robots was introduced, considering their dominant influence in environmental perception technologies. It was concluded that multi-wheel robots, especially four-wheel robots, were more suitable for the agricultural environment due to their favorable adaptability and robustness in various agricultural scenarios. In recent years, multi-wheel agricultural robots have gained widespread adoption and application globally. The further improvement of the universality, operation efficiency, and intelligence of agricultural wheeled robots is determined by the employed perception systems and control systems. Therefore, agricultural wheeled robots equipped with novel 3D environmental perception technologies can obtain high-dimensional environmental information, which is significant for improving the accuracy of decision-making and control. Moreover, it enables them to explore effective ways to address the challenges in intelligent environmental perception technology. Secondly, the recent development status of 3D environmental perception technologies in the agriculture field was briefly reviewed. Meanwhile, sensing equipment and the corresponding key technologies were also introduced. For the wheeled robots reported in the agriculture area, it was noted that the applied technologies of environmental perception, in terms of the primary employed sensor solutions, were divided into three categories: LiDAR, vision sensors, and multi-sensor fusion-based solutions. Multi-line LiDAR had better performance on many tasks when employing point cloud processing algorithms. Compared with LiDAR, depth cameras such as binocular cameras, TOF cameras, and structured light cameras have been comprehensively investigated for their application in agricultural robots. Depth camera-based perception systems have shown superiority in cost and providing abundant point cloud information. This study has investigated and summarized the latest research on 3D environmental perception technologies employed by wheeled robots in agricultural machinery. In the reported application scenarios of agricultural environmental perception, the state-of-the-art 3D environmental perception approaches have mainly focused on obstacle recognition, path recognition, and plant phenotyping. 3D environmental perception technologies have the potential to enhance the ability of agricultural robot systems to understand and adapt to the complex, unstructured agricultural environment. Furthermore, they can effectively address several challenges that traditional environmental perception technologies have struggled to overcome, such as partial sensor information loss, adverse weather conditions, and poor lighting conditions. Current research results have indicated that multi-sensor fusion-based 3D environmental perception systems outperform single-sensor-based systems. This superiority arises from the amalgamation of advantages from various sensors, which concurrently serve to mitigate individual shortcomings. [Conclusions and Prospects] The potential of 3D environmental perception technology for agricultural wheeled robots was discussed in light of the evolving demands of smart agriculture. Suggestions were made to improve sensor applicability, develop deep learning-based agricultural environmental perception technology, and explore intelligent high-speed online multi-sensor fusion strategies. Currently, the employed sensors in agricultural wheeled robots may not fully meet practical requirements, and the system's cost remains a barrier to widespread deployment of 3D environmental perception technologies in agriculture. Therefore, there is an urgent need to enhance the agricultural applicability of 3D sensors and reduce production costs. Deep learning methods were highlighted as a powerful tool for processing information obtained from 3D environmental perception sensors, improving response speed and accuracy. However, the limited datasets in the agriculture field remain a key issue that needs to be addressed. Additionally, multi-sensor fusion has been recognized for its potential to enhance perception performance in complex and changeable environments. As a result, it is clear that 3D environmental perception technology based on multi-sensor fusion is the future development direction of smart agriculture. To overcome challenges such as slow data processing speed, delayed processed data, and limited memory space for storing data, it is essential to investigate effective fusion schemes to achieve online multi-source information fusion with greater intelligence and speed.
轮式机器人 / 三维环境感知 / 激光雷达 / 视觉传感器 / 多传感器融合 / 自主导航 {{custom_keyword}} /
wheeled robot / 3D environment perception / laser radar / vision sensors / multi-sensor fusion / autonomous navigation {{custom_keyword}} /
1 |
中共中央 国务院. 关于做好2022年全面推进乡村振兴重点工作的意见[EB/OL]. (2022-02-22)[2023-07-29]
{{custom_citation.content}}
{{custom_citation.annotation}}
|
2 |
罗锡文, 廖娟, 胡炼, 等. 我国智能农机的研究进展与无人农场的实践[J]. 华南农业大学学报, 2021, 42(6): 8-17, 5.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
3 |
李道亮, 李震. 无人农场系统分析与发展展望[J]. 农业机械学报, 2020, 51(7): 1-12.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
4 |
欧阳安, 崔涛, 林立. 智能农机装备产业现状及发展建议[J]. 科技导报, 2022, 40(11): 55-66.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
5 |
刘成良, 贡亮, 苑进, 等. 农业机器人关键技术研究现状与发展趋势[J]. 农业机械学报, 2022, 53(7): 1-22, 55.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
6 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
7 |
陶永, 王田苗, 刘辉, 等. 智能机器人研究现状及发展趋势的思考与建议[J]. 高技术通讯, 2019, 29(2): 149-163.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
8 |
谭民, 王硕. 机器人技术研究进展[J]. 自动化学报, 2013, 39(7): 963-972.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
9 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
10 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
11 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
12 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
13 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
14 |
刘延斌. 自行车机器人研究综述[J]. 机械设计与研究, 2007, 23(5): 113-115.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
15 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
16 |
IndustrialCNH. Newsroom[EB/OL]. [2023-08-29]
{{custom_citation.content}}
{{custom_citation.annotation}}
|
17 |
王儒敬, 孙丙宇. 农业机器人的发展现状及展望[J]. 中国科学院院刊, 2015, 30(6): 803-809.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
18 |
林欢, 许林云. 中国农业机器人发展及应用现状[J]. 浙江农业学报, 2015, 27(5): 865-871.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
19 |
王佳荣. 面向自动驾驶的多传感器三维环境感知系统关键技术研究[D]. 北京: 中国科学院大学, 2020.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
20 |
王世峰, 戴祥, 徐宁, 等. 无人驾驶汽车环境感知技术综述[J]. 长春理工大学学报(自然科学版), 2017, 40(1): 1-6.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
21 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
22 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
23 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
24 |
王宝梁, 沈文龙, 张宝玉. 农用无人车环境感知技术发展现状及趋势分析[J]. 中国农机化学报, 2021, 42(11): 214-221.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
25 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
26 |
刘斌, 张军, 鲁敏, 等. 激光雷达应用技术研究进展[J]. 激光与红外, 2015, 45(2): 117-122.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
27 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
28 |
陈晓冬, 张佳琛, 庞伟凇, 等. 智能驾驶车载激光雷达关键技术与应用算法[J]. 光电工程, 2019, 46(7): 34-46.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
29 |
余莹洁. 车载激光雷达的主要技术分支及发展趋势[J]. 科研信息化技术与应用, 2018, 9(6): 16-24.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
30 |
赵腾. 基于激光扫描的联合收割机自动导航方法研究[D]. 杨凌: 西北农林科技大学, 2017.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
31 |
何勇, 蒋浩, 方慧, 等. 车辆智能障碍物检测方法及其农业应用研究进展[J]. 农业工程学报, 2018, 34(9): 21-32.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
32 |
么汝亭. 林用移动机器人的环境感知与跟踪控制研究[D]. 北京: 北京林业大学, 2021.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
33 |
孙意凡, 孙建桐, 赵然, 等. 果实采摘机器人设计与导航系统性能分析[J]. 农业机械学报, 2019, 50(S1): 8-14.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
34 |
郭成洋. 果园智能车辆自动导航系统关键技术研究[D]. 杨凌: 西北农林科技大学, 2020.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
35 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
36 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
37 |
朱云, 凌志刚, 张雨强. 机器视觉技术研究进展及展望[J]. 图学学报, 2020, 41(6): 871-890.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
38 |
向学勤, 潘志庚, 童晶. 深度相机在计算机视觉与图形学上的应用研究(英文)[J]. 计算机科学与探索, 2011, 5(6): 481-492.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
39 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
40 |
周星, 高志军. 立体视觉技术的应用与发展[J]. 工程图学学报, 2010, 31(4): 50-55.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
41 |
陈舒雅. 基于深度学习的立体匹配技术研究[D]. 杭州: 浙江大学, 2022.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
42 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
43 |
赵子健. 基于深度相机的图像处理研究[D]. 合肥: 中国科学技术大学, 2022.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
44 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
45 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
46 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
47 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
48 |
刘伟洪, 何雄奎, 刘亚佳, 等. 果园行间3D LiDAR导航方法[J]. 农业工程学报, 2021, 37(9): 165-174.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
49 |
熊积奎. 基于激光雷达和卫星定位的果园喷雾机导航控制研究[D]. 镇江: 江苏大学, 2022.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
50 |
耿丽杰. 基于激光雷达和RTK的葡萄园自主导航平台的研究与设计[D]. 淄博: 山东理工大学, 2022.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
51 |
季宇寒, 徐弘祯, 张漫, 等. 基于激光雷达的农田环境点云采集系统设计[J]. 农业机械学报, 2019, 50(S1): 1-7.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
52 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
53 |
尚业华, 张光强, 孟志军, 等. 基于欧氏聚类的三维激光点云田间障碍物检测方法[J]. 农业机械学报, 2022, 53(1): 23-32.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
54 |
胡广锐, 孔微雨, 齐闯, 等. 果园环境下移动采摘机器人导航路径优化[J]. 农业工程学报, 2021, 37(9): 175-184.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
55 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
56 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
57 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
58 |
张漫, 苗艳龙, 仇瑞承, 等. 基于车载三维激光雷达的玉米叶面积指数测量[J]. 农业机械学报, 2019, 50(6): 12-21.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
59 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
60 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
61 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
62 |
王飞涛, 樊春春, 李兆东, 等. 机器人在设施农业领域应用现状及发展趋势分析[J]. 中国农机化学报, 2020, 41(3): 93-98, 120.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
63 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
64 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
65 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
66 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
67 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
68 |
杨福增, 刘珊, 陈丽萍, 等. 基于立体视觉技术的多种农田障碍物检测方法[J]. 农业机械学报, 2012, 43(5): 168-172, 202.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
69 |
姬长英, 沈子尧, 顾宝兴, 等. 基于点云图的农业导航中障碍物检测方法[J]. 农业工程学报, 2015, 31(7): 173-179.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
70 |
徐俊杰. 基于视觉的丘陵山区田间道路场景理解和障碍物检测研究[D]. 重庆: 西南大学, 2019.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
71 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
72 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
73 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
74 |
乐晓亮. 番茄串的机器人采收方法研究与应用[D]. 广州: 华南理工大学, 2021.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
75 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
76 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
77 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
78 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
79 |
余越. 基于融合导航与强化学习算法的田间智能农机自主避障方法研究[D]. 杭州: 浙江大学, 2022.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
80 |
何坤. 基于ROS的草莓温室自主移动机器人全局路径规划研究[D]. 武汉: 武汉轻工大学, 2020.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
81 |
李洋, 赵鸣, 徐梦瑶, 等. 多源信息融合技术研究综述[J]. 智能计算机与应用, 2019, 9(5): 186-189.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
82 |
许博玮, 马志勇, 李悦. 多传感器信息融合技术在环境感知中的研究进展及应用[J]. 计算机测量与控制, 2022, 30(9): 1-7, 21.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
83 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
84 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
85 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
86 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
87 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
88 |
褚福春. 基于多传感器融合的农业机器人非结构化环境导航技术研究[D]. 淄博: 山东理工大学, 2022.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
89 |
刘宇峰. 基于机器视觉的自主导航农机避障路径规划[D]. 南京: 南京农业大学, 2020.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
90 |
何蒙. 2D-3D信息组合的棚架果园复杂场景自主感知与导航[D]. 镇江: 江苏大学, 2021.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
91 |
林乙蘅. 基于多源信息融合的智能农机路径规划和路径跟踪研究[D]. 南京: 东南大学, 2018.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
文章所在专题
/
〈 |
|
〉 |