自动导航与测控技术在保护性耕作中的应用现状和展望

王春雷, 李洪文, 何进, 王庆杰, 卢彩云, 陈立平

智慧农业(中英文). 2020, 2(4): 41-55

PDF(2504 KB)
PDF(2504 KB)
智慧农业(中英文) ›› 2020, Vol. 2 ›› Issue (4) : 41-55. DOI: 10.12133/j.smartag.2020.2.4.202002-SA002
专刊--农业机器人与智能装备

自动导航与测控技术在保护性耕作中的应用现状和展望

作者信息 +

State-of-the-Art and Prospect of Automatic Navigation and Measurement Techniques Application in Conservation Tillage

Author information +
History +

本文亮点

实现智能化是提升保护性耕作机具作业质量和效率的重要途径,自动导航与测控技术作为智能化技术的重要组成部分,近年来在保护性耕作中的应用发展迅速。本文首先从接触式、机器视觉式和GNSS式三种免少耕播种自动导航技术入手,阐述了自动导航技术在保护性耕作中的应用现状;然后对作业参数监测技术的发展动态进行了详细介绍,包括地表秸秆覆盖率的快速检测技术、免少耕播种机播种参数监测技术及保护性耕作机具作业面积监测技术;之后阐述了保护性耕作机具作业控制技术的发展现状,主要介绍了免少耕播种机漏播补偿控制技术和作业深度控制技术。最后在总结自动导航与测控技术在保护性耕作中现有应用的基础上,展望了未来保护性耕作机具自动导航技术、作业参数监测技术和保护性耕作机具作业控制技术三者的研究方向。

HeighLight

Intelligent technology is one of the important approaches to improve working quality and efficiency of conservation tillage machine. Automatic navigation and measurement & control technology, which are the key components of intelligent technology, have been rapidly developed and applied in conservation tillage. In this paper, the application progress of automatic navigation and measurement & control technology in conservation tillage, including automatic guidance technology, operation monitoring technology for operating parameters and operation controlling technology of conservation tillage machine were reviewed. Firstly, wheat-maize planting mode was taken as an example to expound the automatic guidance technology for conservation tillage machine due to many types of crop planting modes under conservation tillage. According to the principle of navigation, it could be divided into automatic guidance technology of touch type, automatic guidance technology of machine vision type and automatic guidance technology of GNSS type. From these different automatic guidance technologies for no/minimum tillage seeding in maize stubble field, the application progress of automatic navigation technology in conservation tillage machine was introduced in detail. Secondly, the development of the operation monitoring technology for operating parameters of conservation tillage machine was systematically presented as follows: 1) The rapid detection technology for surface straw coverage, including surface straw coverage before and after operation, which was of great significance for the determination of conservation tillage technology and the evaluation of the performance of the conservation tillage machine; 2) The monitoring technology for seeding parameters of no/minimum tillage planter, mainly contained seeding quantity, missed seeding and multiples seeding, which were the key indicators for seeding quality; 3) The monitoring technology for operating area of conservation tillage machine, which was mainly calculated based on the forward speed of the testing machine. Thirdly, the development status of operation controlling technology for conservation tillage machine was reviewed, mainly focusing on the compensation and controlling technology for missed seeding and operation depth controlling technology. The operation controlling technology for conservation tillage machine, which was capable of realizing certain active control of the machine key components under the condition of accurate and real-time monitoring of the current operation status of conservation tillage machine, was important for working quality. To be specific, the operation depth controlling technology was composed of seeding depth, subsoiling depth and topsoil tillage depth. In the end, on the basis of summarizing the current application of automatic navigation and measurement technology in conservation tillage, the future research directions of automatic guidance technology, operation monitoring technology for operating parameters, and operation controlling technology in conservation tillage machine were prospected.

引用本文

导出引用
王春雷 , 李洪文 , 何进 , 王庆杰 , 卢彩云 , 陈立平. 自动导航与测控技术在保护性耕作中的应用现状和展望. 智慧农业. 2020, 2(4): 41-55 https://doi.org/10.12133/j.smartag.2020.2.4.202002-SA002
Chunlei WANG , Hongwen LI , Jin HE , Qingjie WANG , Caiyun LU , Liping CHEN. State-of-the-Art and Prospect of Automatic Navigation and Measurement Techniques Application in Conservation Tillage. Smart Agriculture. 2020, 2(4): 41-55 https://doi.org/10.12133/j.smartag.2020.2.4.202002-SA002

参考文献

1
MEENA B P, SHIRALE A O, DOTANIYA M L, et al. Conservation agriculture: A new paradigm for improving input use efficiency and crop productivity[M]. Singapore: Springer Singapore, 2016.
2
KASSAM A, FRIEDRICH T, DERPSCH R. Global spread of conservation agriculture[J]. International Journal of Environmental Studies, 2018, 76(1): 29-51.
3
何进, 李洪文, 陈海涛, 等. 保护性耕作技术与机具研究进展[J]. 农业机械学报, 2018, 49(4): 1-19.
HE J, LI H, CHEN H, et al. Research progress of conservation tillage technology and machine[J]. Transactions of the CSAM, 2018, 49(4): 1-19.
4
赵春江. 智慧农业发展现状及战略目标研究[J]. 智慧农业, 2019, 1(1): 1-7.
ZHAO C. State-of-the-art and recommended developmental strategic objectives of smart agriculture[J]. Smart Agriculture, 2019, 1(1): 1-7.
5
高万林, 张港红, 张国锋, 等. 核心技术原始创新引领智慧农业健康发展[J]. 智慧农业, 2019, 1(1): 8-19.
GAO W, ZHANG G, ZHANG G, et al. Original innovation of key technologies leading healthy development of smart agriculture[J]. Smart Agriculture, 2019, 1(1): 8-19.
6
魏延富, 高焕文, 李洪文. 三种一年两熟地区小麦免耕播种机适应性试验与分析[J]. 农业工程学报, 2005, 21(1): 97-101.
WEI Y, GAO H, LI H. Experiment and analyses of the adaptabilities of three wheat no-tillage drills on corn stubble in the areas with two ripe crops a year[J]. Transactions of the CSAE, 2005, 21(1): 97-101.
7
魏延富. 机电伺服触觉式秸秆导向系统试验研究[D]. 北京: 中国农业大学, 2005.
WEI Y. Study on feeler based guidance system with electro-mechanical servo following stubble[D]. Beijing: China Agricultural University, 2005.
8
吴才聪, 方向明. 基于北斗系统的大田智慧农业精准服务体系构建[J]. 智慧农业, 2019,1(4): 83-90.
WU C, FANG X. Development of precision service system for intelligent agriculture field crop production based on BeiDou system[J]. Smart Agriculture, 2019, 1(4): 83-90.
9
李兵. 小麦对行免耕播种机的研究[D]. 北京: 中国农业大学, 2004.
LI B. Study on the specific row no-till wheat drill[D]. Beijing: China Agricultural University, 2004.
10
李兵, 李洪文. 2BMD-12型小麦对行免耕播种机的设计[J]. 农业机械学报, 2006, 37(3): 41-44.
LI B, LI H. Design and study of 2BMD 12 no-till planter for wheat[J]. Transactions of the CSAM, 2006, 37(3): 41-44.
11
胡静涛, 高雷, 白晓平, 等. 农业机械自动导航技术研究进展[J]. 农业工程学报, 2015, 31(10): 1-10.
HU J, GAO L, BAI X, et al. Review of research on automatic guidance of agricultural vehicles[J]. Transactions of the CSAE, 2015, 31(10): 1-10.
12
何卿. 基于多传感器融合的拖拉机行间导航系统研究[D]. 北京: 中国农业大学, 2007.
HE Q. Automatic guidance system for tractor inter-row operations based on multiple sensors[D]. Beijing: China Agricultural University, 2007.
13
魏延富, 高焕文, 李洪文. 基于电液伺服及反馈系统的拖拉机转向控制研究[J]. 农机化研究, 2006(2): 67-69.
WEI Y, GAO H, LI H. Study on control of automatic steering of tractor based on hydraulic/electronic servo and feedback system[J]. Journal of Agricultural Mechanization Research, 2006(2): 67-69.
14
孟庆宽. 基于机器视觉的农业车辆—农具组合导航系统路径识别及控制方法研究[D]. 北京: 中国农业大学, 2014.
MENG Q. Methods of navigation control and path recognition in the integrated guidance system of agricultural vehicle and implement based on machine vision[D]. Beijing: China Agricultural University, 2014.
15
刘成良, 林洪振, 李彦明, 等. 农业装备智能控制技术研究现状与发展趋势分析[J]. 农业机械学报, 2020, 51(1): 1-18.
LIU C, LIN H, LI Y, et al. Analysis on status and development trend of intelligent control technology for agricultural equipment[J]. Transactions of the CSAM, 2020, 51(1): 1-18.
16
张漫, 季宇寒, 李世超, 等. 农业机械导航技术研究进展[J]. 农业机械学报, 2020, 51(4): 1-18.
ZHANG M, JI Y, LI S, et al. Research progress of agricultural machinery navigation technology[J]. Transactions of the CSAM, 2020, 51(4): 1-18.
17
陈媛. 基于机器视觉的秸秆行茬导航路径的检测研究[D]. 北京: 中国农业大学, 2008.
CHEN Y. Detection of stubble row for machine vision guidance in no-till field[D]. Beijing: China Agricultural University, 2008.
18
李娇. 玉米茬地免耕播种机导向控制系统的设计与试验[D]. 北京: 中国农业大学, 2009.
LI J. Design and experiment on the oriented-control system for no-tillage planters in the maize stubble field[D]. Beijing: China Agricultural University, 2009.
19
陈婉芝. 基于机器视觉的免耕播种机对行避茬技术研究[D]. 北京: 中国农业大学, 2018.
CHEN W. Study on maize stubble avoidance technology based on machine vision for row-follow no-till seeder[D]. Beijing: China Agricultural University, 2018.
20
刘兆祥. 农业车辆自动导航控制方法及导航路径识别算法研究[D]. 北京: 中国农业大学, 2011.
LIU Z. Methods of navigation control and path recognition in autonomous agricultural vehicle[D]. Beijing: China Agricultural University, 2011.
21
Deere John. Auto Trac自动导航[EB/OL]. [2020-05-28].
农业管理解决方案/自动导航系统/Auto Trac自动导航/.
22
Trimble. CenterPoint®RTX自动导航[EB/OL].[2020-05-28].
23
王岩, 李宏鹏, 牛东岭, 等. GNSS平地作业路径实时规划与导航方法研究[J]. 农业机械学报, 2014, 45(S1): 271-275.
WANG Y, LI H, NIU D, et al. Real-time path planning and navigation in GNSS controlled land leveling[J]. Transactions of the CSAM, 2014, 45(S1): 271-275.
24
姬长英, 周俊. 农业机械导航技术发展分析[J]. 农业机械学报, 2014, 45(9): 44-54.
JI C, ZHOU J. Current situation of navigation technologies for agricultural machinery[J]. Transactions of the CSAM, 2014, 45(9): 44-54.
25
何勇, 蒋浩, 方慧, 等. 车辆智能障碍物检测方法及其农业应用研究进展[J]. 农业工程学报, 2018, 34(9): 21-32.
HE Y, JIANG H, FANG H, et al. Research progress of intelligent obstacle detection methods of vehicles and their application on agriculture[J]. Transactions of the CSAE, 2018, 34(9): 21-32.
26
王庆杰, 王宪良, 李洪文, 等. 华北一年两熟区玉米秸秆覆盖对冬小麦生长的影响[J]. 农业机械学报, 2017, 48(8): 192-198.
WANG Q, WANG X, LI H, et al. Effect of maize straw mulching on winter heat growth in double cropping area of northern China[J]. Transactions of the CSAM, 2017, 48(8): 192-198.
27
章志强, 何进, 李洪文, 等. 可调节式秸秆粉碎抛撒还田机设计与试验[J].农业机械学报, 2017, 48(9): 76-87.
ZHANG Z, HE J, LI H, et al. Design and experiment on straw chopper cum spreader with sdjustable spreading device[J]. Transactions of the CSAM, 2017, 48(9): 76-87.
28
NAJAFI P, NAVID H, FEIZIZADEH B, et al. Object-based satellite image analysis applied for crop residue estimating using Landsat OLI imagery[J]. International Journal of Remote Sensing, 2018, 39(19): 6117-6136.
29
HIVELY W, SHERMEYER J, LAMB B, et al. Mapping crop residue by combining Landsat and WorldView-3 satellite imagery[J]. Remote Sensing, 2019, 11(16): ID 1857.
30
李洪文, 李慧, 何进, 等. 基于人工神经网络的田间秸秆覆盖率检测系[J]. 农业机械学报, 2009, 40(6): 58-62.
LI H, LI H, HE J, et al. System for residue cover rate in field based on bp neural network[J]. Transactions of the CSAM, 2009, 40(6): 58-62.
31
李佳, 吕程序, 苑严伟, 等. 快速傅里叶变换结合SVM 算法识别地表玉米秸秆覆盖率[J]. 农业工程学报, 2019, 35(20): 194-201.
LI J, LYU C, YUAN Y, et al. Automatic recognition of corn straw coverage based on fast Fourier transform and SVM[J]. Transactions of the CSAE, 2019, 35(20): 194-201.
32
苏艳波, 张东远, 李洪文, 等. 基于自动取阈分割算法的秸秆覆盖率检测系统[J]. 农机化研究, 2012, 32(8): 144-148.
SU Y, ZHANG D, LI H, et al. Measuring system for residue cover rate based on automation threshold[J]. Journal of Agricultural Mechanization Research, 2012, 32(8): 144-148.
33
刘媛媛, 王跃勇, 于海业, 等. 基于多阈值图像分割算法的秸秆覆盖率检测[J]. 农业机械学报, 2018, 49(12): 27-35, 55.
LIU Y, WANG Y, YU H, et al. Detection of straw coverage rate based on multi-threshold image segmentation algorithm[J]. Transactions of the CSAM, 2018, 49(12): 27-35, 55.
34
Horsch. Maestro SW seeders[EB/OL].[2019-11-15].
产品/播种机/精密播种机/maestro-sw.
35
Amazone ED [EB/OL].[2019-11-15].
36
Deere John. Trench Delivery System[EB/OL]. [2019-11-15].
37
AL-MALLAHI A A, KATAOKA T. Application of fiber sensor in grain drill to estimate seed flow under field operational conditions[J]. Computers and Electronics in Agriculture, 2016, 121: 412-419.
38
AHMAD A A, KATAOKA T. Monitoring the flow of seeds in grain drill using fiber sensor[J]. IFAC Processing Volumes, 2013, 46(18): 311-314.
39
胡飞, 刘远, 陈彩芙, 等. 基于LabVIEW的蔬菜精密播种监测系统设计[J]. 传感器与微系统, 2019, 38(10): 114-117.
HU F, LIU Y, CHEN C, et al. Design of vegetable precise seedling monitoring system based on LabVIEW[J]. Transducer and Microsystem Technologies, 2019, 38(10): 114-117.
40
DU R, GONG B, LIU N, et al. Design and experiment on intelligent fuzzy monitoring system for corn planters[J]. Int J Agric & Biol Eng, 2013, 6(3): 11-18.
41
纪超, 陈学庚, 陈金成, 等. 玉米免耕精量播种机排种质量监测系统[J]. 农业机械学报, 2016, 47(8): 1-6.
JI C, CHEN X, CHEN J, et al. Monitoring system for working performance of no-tillage corn precision seeder[J]. Transactions of the CSAM, 2016, 47(8): 1-6.
42
KARIMI H, NAVID H, BESHARATI B, et al. A practical approach to comparative design of non-contact sensing techniques for seed flow rate detection[J]. Computers and Electronics in Agriculture, 2017, 142: 165-172.
43
吴南, 林静, 李宝筏. 免耕播种机精量穴施肥系统设计与试验[J]. 农业机械学报, 2018, 49(7): 64-72.
WU N, LIN J, LI B. Design and test on no-tillage planter precise hole fertilization system[J]. Transactions of the CSAM, 2018, 49(7): 64-72.
44
邱兆美, 张巍朋, 赵博, 等. 小粒种子电动播种机作业质量监测系统设计与试验[J]. 农业机械学报, 2019, 50(4): 77-83.
QIU Z, ZHANG W, ZHAO B, et al. Design and test of operation quality monitoring system for small grain electric seeder[J]. Transactions of the CSAM, 2019, 50(4): 77-83.
45
BESHARATI B, NAVID H, KARIMI H, et al. Development of an infrared seed-sensing system to estimate flow rates based on physical properties of seeds[J]. Computers and Electronics in Agriculture, 2019, 162: 874-881.
46
黄东岩, 贾洪雷, 祁悦, 等. 基于聚偏二氟乙烯压电薄膜的播种机排种监测系统[J]. 农业工程学报, 2013, 29(23): 15-22.
HUANG D, JIA H, QI Y, et al. Seeding monitor system for planter based on polyvinylidence fluoride piezoelectric film[J]. Transactions of the CSAE, 2013, 29(23): 15-22.
47
赵瑜会. 玉米免耕播种机播种施肥监控系统研究[D]. 长春: 吉林农业大学, 2018.
ZHAO Y. Research on sowing-fertilization control and monitoring system of corn no-tillage planter[D]. Changchun: Jilin Agricultural University, 2018.
48
张曌. 压电冲击式水稻穴直播精准实时监测系统设计与试验[D]. 哈尔滨: 东北农业大学, 2019.
ZHANG Z. Design and experiment of piezoelectric impact accurate real-time monitoring system for rice hill-direct-seeding[D]. Harbin: Northeast Agricultural University, 2019.
49
周利明, 李树君, 张小超, 等. 基于电容法的棉管籽棉质量流量检测[J]. 农业机械学报, 2014, 45(6): 47-52.
ZHOU L, LI S, ZHANG X, et al. Detection of seedcotton mass flow based on capacitance approach[J]. Transactions of the CSAM, 2014, 45(6): 47-52.
50
陈建国, 李彦明, 覃程锦, 等. 小麦播种量电容法检测系统设计与试验[J]. 农业工程学报, 2018, 34(18): 51-58.
CHEN J, LI Y, QIN C, et al. Design and test of capacitive detection system for wheat seeding quantity[J]. Transactions of the CSAE, 2018, 34(18): 51-58.
51
苑严伟, 白慧娟, 方宪法, 等. 玉米播种与测控技术研究进展[J]. 农业机械学报, 2018, 49(9): 1-18.
YUAN Y, BAI H, FANG X, et al. Research progress on maize seeding and its measurement and control technology[J]. Transactions of the CSAM, 2018, 49(9): 1-18.
52
CAY A, KOCABIYIK H, KARAASLAN B, et al. Development of an opto-electronic measurement system for planter laboratory tests[J]. Measurement, 2017, 102: 90-95.
53
周晓飞. 汽车传感器维修百日通[M]. 北京:化学工业出版社, 2019.
ZHOU X. Hundred days learning for automotive sensor maintenance[M]. Beijing: Chemical Industry press, 2019.
54
吴建平. 传感器原理及其应用[M]. 北京: 机械工业出版社, 2016.
WU J. Principle of sensor and its application[M]. Beijing: China Machine Press, 2016.
55
董燕. 精准定位变率施肥播种免耕机的研究[D]. 青岛: 山东科技大学, 2010.
DONG Y. Precise variability fertilization no-till seeder[D]. Qingdao: Shandong University of Science and Technology, 2010
56
孙永佳, 沈景新, 窦青青, 等. 基于Cortex-M3的免耕播种机监控系统设计与试验[J]. 农业机械学报, 2018, 49(8): 50-58.
SUN Y, SHEN J, DOU Q, et al. Design and test of monitoring system of no-tillage planter based on Cortex-M3 processor[J]. Transactions of the CSAM, 2018, 49(8): 50-58.
57
黄东岩, 朱龙图, 贾洪雷, 等. 基于GPS和GPRS的远程玉米排种质量监测系统[J]. 农业工程学报, 2016, 32(6): 162-168.
HUANG D, ZHU L, JIA H, et al. Remotemonitoring system for corn seeding quality based on GPS and GPRS[J]. Transactions of the CSAE, 2016, 32(6): 162-168.
58
隋铭明, 沈飞, 徐爱国, 等.基于北斗卫星导航的秸秆机械化还田作业管理系统[J]. 农业机械学报, 2016, 47(1): 23-28.
SUI M, SHEN F, XU A, et al. Management system for mechanized straw returning based on BDS[J]. Transactions of the CSAM, 2016, 47(1): 23-28.
59
丁幼春, 王雪玲, 廖庆喜, 等. 油菜籽漏播螺管式补种器设计与试验[J]. 农业工程学报, 2015, 31(22): 16-24.
DING Y, WANG X, LIAO Q, et al. Design and experiment on spiral-tube reseeding device for loss sowing of rapeseed[J]. Transactions of the CSAE, 2015, 31(22): 16-24.
60
吴南, 林静, 李宝筏, 等. 免耕播种机漏播补偿系统设计与试验[J]. 农业机械学报, 2017, 48(7): 69-77, 120.
WU N, LIN J, LI B, et al. Design and test on no-tillage planter reseeding system for miss-seeding[J]. Transactions of the CSAM, 2017, 48(7): 69-77, 120.
61
朱瑞祥, 葛世强, 翟长远, 等. 大籽粒作物漏播自补种装置设计与试验[J]. 农业工程学报, 2014, 30(21): 1-8.
ZHU R, GE S, ZHAI C, et al. Design and experiment of automatic reseeding device for miss-seeding of crops with large grain[J]. Transactions of the CSAE, 2014, 30(21): 1-8.
62
SØREN K N, MUNKHOLM L J, MATHIEU L, et al. Seed drill depth control system for precision seeding[J]. Computers and Electronics in Agriculture, 2018, 144: 174-180.
63
HÅKANSSO I, ARVIDSSON J, KELLER T, et al. Effects of seedbed properties on crop emergence:1. Temporal effects of temperature and sowing depth in seedbeds with favourable properties[J]. Acta Agriculturae Scandinavica, Section B-Plant Soil Science, 2011, 61(5): 458-468.
64
KARAYEL D, ZMERZI A. Evaluation of three depth-control components on seed placement accuracy and emergence for a precision planter[J]. Applied Engineering in Agriculture, 2008, 24(3): 271-276.
65
AG Leader Technology, USA. SureForceTM downforce control system[EB/OL].[2019-11-28].
66
Maschio-gaspardo China. Seeding Tube[EB/OL].[2019-11-28].
67
Precision planting LLC, USA. DeltaForce® downforce system & 20/20 SeedSense® monitoring system[EB/OL].[2019-11-28].
68
Precision planting LLC, USA. Airforce® downforce system & 20/20 SeedSense® monitoring system[EB/OL].[2019-11-28].
69
Kinze. 4800 planter[EB/OL].[2019-11-28].
70
荆慧荣. 播种单体下压力自动控制系统的研究 [D]. 北京: 中国农业大学, 2019.
JING H. Study on an electro-hydraulic downforce control system for planter row unit[D]. Beijing: China Agricultural University, 2019.
71
李玉环, 孟鹏祥, 耿端阳, 等. 玉米播种深度智能调控系统研究[J]. 农业机械学报, 2016, 47(S1): 42, 62-68.
LI Y, MENG P, GENG D, et al. Intelligent system for adjusting and controlling corn seeding depth[J]. Transactions of the CSAM, 2016, 47(S1): 42, 62-68.
72
CORTES BURCE M E, KATAOKA T, OKAMOTO H, et al. Seeding depth regulation controlled by independent furrow openers for zero tillage systems[J]. Engineering in Agriculture, Environment and Food, 2013, 6(1):13-19.
73
KIANI S. Automatic on-line depth control of seeding units using a non-contacting ultrasonic sensor[J]. International Journal of Natural & Engineering Sciences, 2012, 6 (2): 39-42.
74
蔡国华, 李慧, 李洪文, 等. 基于ATmega128单片机的开沟深度自控系统试验台的设计[J]. 农业工程学报, 2011, 27(10): 11-16.
CAI G, LI H, LI H, et al. Design of test-bed for automatic depth of furrow opening control system based on ATmega128 single chipmicrocomputer[J]. Transactions of the CSAE, 2011, 27(10): 11-16.
75
姜鑫铭. 玉米免耕播种机精确播种关键技术研究[D]. 长春: 吉林大学, 2017.
JIANG X. Study on key technologies of precision seeding for maize no-tillage planter[D]. Changchun: Jilin University, 2017.
76
付卫强, 董建军, 梅鹤波, 等. 玉米播种单体下压力控制系统设计与试验[J]. 农业机械学报, 2018, 49(6): 68-77.
FU W, DONG J, MEI H, et al. Design and test of maize seeding unit downforce control system[J]. Transactions of the CSAM, 2018, 49(6): 68-77.
77
贾洪雷, 朱龙图, 黄东岩, 等. 基于Flex传感器的免耕播种机播深自动控制系统[J]. 吉林大学学报(工学版), 2019, 49(1): 166-175.
JIA H, ZHU L, HUANG D, et al. Automatic control system of sowing depth for no-till planter based on Flex sensor[J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(1): 166-175.
78
赵金辉, 刘立晶, 杨学军, 等. 播种机开沟深度控制系统的设计与室内试验[J]. 农业工程学报, 2015, 31(6): 35-41.
ZHAO J, LIU L, YANG X, et al. Design and laboratory test of control system for depth of furrow opening[J]. Transactions of the CSAE, 2015, 31(6): 35-41.
79
John Deere introduces highly versatile 2630 Series Disks with TruSet™ Technology[EB/OL].[2019-12-3]
9-2630-series-truset-technology/.
80
John Deere Company, USA. 2730 combination-ripper[EB/OL]. [2019-12-3].
81
Case. USA. AFS Soil Command[EB/OL].[2019-12-3].
82
王云霞. 液压激振源自激振动深松机耕深测控系统研究与试验[D]. 北京: 中国农业大学, 2019.
WANG Y. Research and experiment on a tillage depth control system for hydraulically self-excited subsoiler[D]. Beijing: China Agricultural University, 2019.
83
吴依行. 基于超声波传感器与液压传动的耕深自动监测控制深松机设计[D]. 北京: 中国农业大学, 2018.
WU Y. The design of depth automatic monitoring control subsoiler based on ultrasonic sensor and hydraulic drive[D]. Beijing: China Agricultural University, 2018.

脚注

基金

现代农业产业技术体系建设项目-国家小麦产业技术体系(CARS-03)
教育部创新团队发展计划项目(IRT13039)
PDF(2504 KB)

文章所在专题

智慧农业

47

Accesses

0

Citation

Detail

段落导航
相关文章

/