
自动导航与测控技术在保护性耕作中的应用现状和展望
State-of-the-Art and Prospect of Automatic Navigation and Measurement Techniques Application in Conservation Tillage
实现智能化是提升保护性耕作机具作业质量和效率的重要途径,自动导航与测控技术作为智能化技术的重要组成部分,近年来在保护性耕作中的应用发展迅速。本文首先从接触式、机器视觉式和GNSS式三种免少耕播种自动导航技术入手,阐述了自动导航技术在保护性耕作中的应用现状;然后对作业参数监测技术的发展动态进行了详细介绍,包括地表秸秆覆盖率的快速检测技术、免少耕播种机播种参数监测技术及保护性耕作机具作业面积监测技术;之后阐述了保护性耕作机具作业控制技术的发展现状,主要介绍了免少耕播种机漏播补偿控制技术和作业深度控制技术。最后在总结自动导航与测控技术在保护性耕作中现有应用的基础上,展望了未来保护性耕作机具自动导航技术、作业参数监测技术和保护性耕作机具作业控制技术三者的研究方向。
Intelligent technology is one of the important approaches to improve working quality and efficiency of conservation tillage machine. Automatic navigation and measurement & control technology, which are the key components of intelligent technology, have been rapidly developed and applied in conservation tillage. In this paper, the application progress of automatic navigation and measurement & control technology in conservation tillage, including automatic guidance technology, operation monitoring technology for operating parameters and operation controlling technology of conservation tillage machine were reviewed. Firstly, wheat-maize planting mode was taken as an example to expound the automatic guidance technology for conservation tillage machine due to many types of crop planting modes under conservation tillage. According to the principle of navigation, it could be divided into automatic guidance technology of touch type, automatic guidance technology of machine vision type and automatic guidance technology of GNSS type. From these different automatic guidance technologies for no/minimum tillage seeding in maize stubble field, the application progress of automatic navigation technology in conservation tillage machine was introduced in detail. Secondly, the development of the operation monitoring technology for operating parameters of conservation tillage machine was systematically presented as follows: 1) The rapid detection technology for surface straw coverage, including surface straw coverage before and after operation, which was of great significance for the determination of conservation tillage technology and the evaluation of the performance of the conservation tillage machine; 2) The monitoring technology for seeding parameters of no/minimum tillage planter, mainly contained seeding quantity, missed seeding and multiples seeding, which were the key indicators for seeding quality; 3) The monitoring technology for operating area of conservation tillage machine, which was mainly calculated based on the forward speed of the testing machine. Thirdly, the development status of operation controlling technology for conservation tillage machine was reviewed, mainly focusing on the compensation and controlling technology for missed seeding and operation depth controlling technology. The operation controlling technology for conservation tillage machine, which was capable of realizing certain active control of the machine key components under the condition of accurate and real-time monitoring of the current operation status of conservation tillage machine, was important for working quality. To be specific, the operation depth controlling technology was composed of seeding depth, subsoiling depth and topsoil tillage depth. In the end, on the basis of summarizing the current application of automatic navigation and measurement technology in conservation tillage, the future research directions of automatic guidance technology, operation monitoring technology for operating parameters, and operation controlling technology in conservation tillage machine were prospected.
保护性耕作 / 自动导航 / 测控 / 智能化 / 农业机械 {{custom_keyword}} /
conservation tillage / automatic navigation / measurement / intelligent / agricultural machinery {{custom_keyword}} /
表1 三种类型的免少耕播种自动导航技术性能对比Table 1 Performance comparison of automatic guidance technology of three types for no/minimum tillage seeding |
导航技术 | 优点 | 缺点 |
---|---|---|
接触式免少耕播种自动导航技术[24] | 1. 探测装置比较简单,精度较高 2. 生产成本低 3. 安装方便,易维护 | 1. 接触式测量,探测信号容易丢失 2. 容易受行间秸秆等障碍物影响 |
机器视觉式免少耕播种自动导航技术[25] | 1. 无需对外发射信号,灵活性强 2. 采集图像包含信息更为全面 3. 作业过程中可实时进行导航路径规划 | 1. 受环境中光照、行间秸秆等影响较大 2. 数据处理算法耗时长,实时性无法得到保证,且对计算机配置要求较高 |
GNSS式免少耕播种自动导航技术[11,23] | 1.RTK-GPS(Realtime Kinematic)定位,精度高, 厘米级 2. 成本正在逐年降低 3. 全天候,覆盖范围广,易于集成 | 1. 玉米根茬位置信息未知的情况下,作业时只能根据预先规划好的路径行驶,无法进行实时路径规划 2. 信号易受环境因素(如大树、高大建筑遮挡,大气中电离层、对流层等)影响 |
表2 不同类型播种参数监测技术性能对比Table 2 Performance comparison of different types of seeding parameter monitoring technology |
1 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
2 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
3 |
何进, 李洪文, 陈海涛, 等. 保护性耕作技术与机具研究进展[J]. 农业机械学报, 2018, 49(4): 1-19.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
4 |
赵春江. 智慧农业发展现状及战略目标研究[J]. 智慧农业, 2019, 1(1): 1-7.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
5 |
高万林, 张港红, 张国锋, 等. 核心技术原始创新引领智慧农业健康发展[J]. 智慧农业, 2019, 1(1): 8-19.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
6 |
魏延富, 高焕文, 李洪文. 三种一年两熟地区小麦免耕播种机适应性试验与分析[J]. 农业工程学报, 2005, 21(1): 97-101.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
7 |
魏延富. 机电伺服触觉式秸秆导向系统试验研究[D]. 北京: 中国农业大学, 2005.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
8 |
吴才聪, 方向明. 基于北斗系统的大田智慧农业精准服务体系构建[J]. 智慧农业, 2019,1(4): 83-90.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
9 |
李兵. 小麦对行免耕播种机的研究[D]. 北京: 中国农业大学, 2004.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
10 |
李兵, 李洪文. 2BMD-12型小麦对行免耕播种机的设计[J]. 农业机械学报, 2006, 37(3): 41-44.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
11 |
胡静涛, 高雷, 白晓平, 等. 农业机械自动导航技术研究进展[J]. 农业工程学报, 2015, 31(10): 1-10.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
12 |
何卿. 基于多传感器融合的拖拉机行间导航系统研究[D]. 北京: 中国农业大学, 2007.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
13 |
魏延富, 高焕文, 李洪文. 基于电液伺服及反馈系统的拖拉机转向控制研究[J]. 农机化研究, 2006(2): 67-69.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
14 |
孟庆宽. 基于机器视觉的农业车辆—农具组合导航系统路径识别及控制方法研究[D]. 北京: 中国农业大学, 2014.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
15 |
刘成良, 林洪振, 李彦明, 等. 农业装备智能控制技术研究现状与发展趋势分析[J]. 农业机械学报, 2020, 51(1): 1-18.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
16 |
张漫, 季宇寒, 李世超, 等. 农业机械导航技术研究进展[J]. 农业机械学报, 2020, 51(4): 1-18.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
17 |
陈媛. 基于机器视觉的秸秆行茬导航路径的检测研究[D]. 北京: 中国农业大学, 2008.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
18 |
李娇. 玉米茬地免耕播种机导向控制系统的设计与试验[D]. 北京: 中国农业大学, 2009.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
19 |
陈婉芝. 基于机器视觉的免耕播种机对行避茬技术研究[D]. 北京: 中国农业大学, 2018.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
20 |
刘兆祥. 农业车辆自动导航控制方法及导航路径识别算法研究[D]. 北京: 中国农业大学, 2011.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
21 |
农业管理解决方案/自动导航系统/Auto Trac自动导航/.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
22 |
Trimble. CenterPoint®RTX自动导航[EB/OL].[2020-05-28].
{{custom_citation.content}}
{{custom_citation.annotation}}
|
23 |
王岩, 李宏鹏, 牛东岭, 等. GNSS平地作业路径实时规划与导航方法研究[J]. 农业机械学报, 2014, 45(S1): 271-275.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
24 |
姬长英, 周俊. 农业机械导航技术发展分析[J]. 农业机械学报, 2014, 45(9): 44-54.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
25 |
何勇, 蒋浩, 方慧, 等. 车辆智能障碍物检测方法及其农业应用研究进展[J]. 农业工程学报, 2018, 34(9): 21-32.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
26 |
王庆杰, 王宪良, 李洪文, 等. 华北一年两熟区玉米秸秆覆盖对冬小麦生长的影响[J]. 农业机械学报, 2017, 48(8): 192-198.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
27 |
章志强, 何进, 李洪文, 等. 可调节式秸秆粉碎抛撒还田机设计与试验[J].农业机械学报, 2017, 48(9): 76-87.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
28 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
29 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
30 |
李洪文, 李慧, 何进, 等. 基于人工神经网络的田间秸秆覆盖率检测系[J]. 农业机械学报, 2009, 40(6): 58-62.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
31 |
李佳, 吕程序, 苑严伟, 等. 快速傅里叶变换结合SVM 算法识别地表玉米秸秆覆盖率[J]. 农业工程学报, 2019, 35(20): 194-201.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
32 |
苏艳波, 张东远, 李洪文, 等. 基于自动取阈分割算法的秸秆覆盖率检测系统[J]. 农机化研究, 2012, 32(8): 144-148.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
33 |
刘媛媛, 王跃勇, 于海业, 等. 基于多阈值图像分割算法的秸秆覆盖率检测[J]. 农业机械学报, 2018, 49(12): 27-35, 55.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
34 |
Horsch. Maestro SW seeders[EB/OL].[2019-11-15].
产品/播种机/精密播种机/maestro-sw.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
35 |
Amazone ED [EB/OL].[2019-11-15].
{{custom_citation.content}}
{{custom_citation.annotation}}
|
36 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
37 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
38 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
39 |
胡飞, 刘远, 陈彩芙, 等. 基于LabVIEW的蔬菜精密播种监测系统设计[J]. 传感器与微系统, 2019, 38(10): 114-117.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
40 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
41 |
纪超, 陈学庚, 陈金成, 等. 玉米免耕精量播种机排种质量监测系统[J]. 农业机械学报, 2016, 47(8): 1-6.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
42 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
43 |
吴南, 林静, 李宝筏. 免耕播种机精量穴施肥系统设计与试验[J]. 农业机械学报, 2018, 49(7): 64-72.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
44 |
邱兆美, 张巍朋, 赵博, 等. 小粒种子电动播种机作业质量监测系统设计与试验[J]. 农业机械学报, 2019, 50(4): 77-83.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
45 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
46 |
黄东岩, 贾洪雷, 祁悦, 等. 基于聚偏二氟乙烯压电薄膜的播种机排种监测系统[J]. 农业工程学报, 2013, 29(23): 15-22.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
47 |
赵瑜会. 玉米免耕播种机播种施肥监控系统研究[D]. 长春: 吉林农业大学, 2018.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
48 |
张曌. 压电冲击式水稻穴直播精准实时监测系统设计与试验[D]. 哈尔滨: 东北农业大学, 2019.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
49 |
周利明, 李树君, 张小超, 等. 基于电容法的棉管籽棉质量流量检测[J]. 农业机械学报, 2014, 45(6): 47-52.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
50 |
陈建国, 李彦明, 覃程锦, 等. 小麦播种量电容法检测系统设计与试验[J]. 农业工程学报, 2018, 34(18): 51-58.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
51 |
苑严伟, 白慧娟, 方宪法, 等. 玉米播种与测控技术研究进展[J]. 农业机械学报, 2018, 49(9): 1-18.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
52 |
CAY A,
{{custom_citation.content}}
{{custom_citation.annotation}}
|
53 |
周晓飞. 汽车传感器维修百日通[M]. 北京:化学工业出版社, 2019.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
54 |
吴建平. 传感器原理及其应用[M]. 北京: 机械工业出版社, 2016.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
55 |
董燕. 精准定位变率施肥播种免耕机的研究[D]. 青岛: 山东科技大学, 2010.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
56 |
孙永佳, 沈景新, 窦青青, 等. 基于Cortex-M3的免耕播种机监控系统设计与试验[J]. 农业机械学报, 2018, 49(8): 50-58.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
57 |
黄东岩, 朱龙图, 贾洪雷, 等. 基于GPS和GPRS的远程玉米排种质量监测系统[J]. 农业工程学报, 2016, 32(6): 162-168.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
58 |
隋铭明, 沈飞, 徐爱国, 等.基于北斗卫星导航的秸秆机械化还田作业管理系统[J]. 农业机械学报, 2016, 47(1): 23-28.
SUI M,
{{custom_citation.content}}
{{custom_citation.annotation}}
|
59 |
丁幼春, 王雪玲, 廖庆喜, 等. 油菜籽漏播螺管式补种器设计与试验[J]. 农业工程学报, 2015, 31(22): 16-24.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
60 |
吴南, 林静, 李宝筏, 等. 免耕播种机漏播补偿系统设计与试验[J]. 农业机械学报, 2017, 48(7): 69-77, 120.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
61 |
朱瑞祥, 葛世强, 翟长远, 等. 大籽粒作物漏播自补种装置设计与试验[J]. 农业工程学报, 2014, 30(21): 1-8.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
62 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
63 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
64 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
65 |
AG Leader Technology, USA. SureForceTM downforce control system[EB/OL].[2019-11-28].
{{custom_citation.content}}
{{custom_citation.annotation}}
|
66 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
67 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
68 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
69 |
Kinze. 4800 planter[EB/OL].[2019-11-28].
{{custom_citation.content}}
{{custom_citation.annotation}}
|
70 |
荆慧荣. 播种单体下压力自动控制系统的研究 [D]. 北京: 中国农业大学, 2019.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
71 |
李玉环, 孟鹏祥, 耿端阳, 等. 玉米播种深度智能调控系统研究[J]. 农业机械学报, 2016, 47(S1): 42, 62-68.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
72 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
73 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
74 |
蔡国华, 李慧, 李洪文, 等. 基于ATmega128单片机的开沟深度自控系统试验台的设计[J]. 农业工程学报, 2011, 27(10): 11-16.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
75 |
姜鑫铭. 玉米免耕播种机精确播种关键技术研究[D]. 长春: 吉林大学, 2017.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
76 |
付卫强, 董建军, 梅鹤波, 等. 玉米播种单体下压力控制系统设计与试验[J]. 农业机械学报, 2018, 49(6): 68-77.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
77 |
贾洪雷, 朱龙图, 黄东岩, 等. 基于Flex传感器的免耕播种机播深自动控制系统[J]. 吉林大学学报(工学版), 2019, 49(1): 166-175.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
78 |
赵金辉, 刘立晶, 杨学军, 等. 播种机开沟深度控制系统的设计与室内试验[J]. 农业工程学报, 2015, 31(6): 35-41.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
79 |
John Deere introduces highly versatile 2630 Series Disks with TruSet™ Technology[EB/OL].[2019-12-3]
9-2630-series-truset-technology/.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
80 |
John Deere Company, USA. 2730 combination-ripper[EB/OL]. [2019-12-3].
{{custom_citation.content}}
{{custom_citation.annotation}}
|
81 |
Case. USA. AFS Soil Command[EB/OL].[2019-12-3].
{{custom_citation.content}}
{{custom_citation.annotation}}
|
82 |
王云霞. 液压激振源自激振动深松机耕深测控系统研究与试验[D]. 北京: 中国农业大学, 2019.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
83 |
吴依行. 基于超声波传感器与液压传动的耕深自动监测控制深松机设计[D]. 北京: 中国农业大学, 2018.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
文章所在专题
/
〈 |
|
〉 |