Most Download
  • Published in last 1 year
  • In last 2 years
  • In last 3 years
  • All
  • Most Downloaded in Recent Month
  • Most Downloaded in Recent Year
Please wait a minute...
  • Select all
    |
  • Crop Science
    Anmin Zhang, Zihong Li, Qirui Zhou, Jiawen Zhao, Yan Zhao, Mengting Zhao, Shangyu Ma, Yonghui Fan, Zhenglai Huang, Wenjing Zhang
    Journal of Integrative Agriculture. 2025, 24(1): 114-131. https://doi.org/10.1016/j.jia.2023.12.003

    Low temperature (LT) in spring has become one of the principal abiotic stresses that restrict the growth and development of wheat.  Diverse analyses were performed to investigate the mechanism underlying the response of wheat grain development to LT stress during booting.  These included morphological observation, measurements of starch synthase activity, and determination of amylose and amylopectin content of wheat grain after exposure to treatment with LT during booting.  Additionally, proteomic analysis was performed using tandem mass tags (TMT).  Results showed that the plumpness of wheat grains decreased after LT stress.  Moreover, the activities of sucrose synthase (SuS, EC 2.4.1.13) and ADP-glucose pyrophosphorylase (AGPase, EC 2.7.7.27) exhibited a significant reduction, leading to a significant reduction in the contents of amylose and amylopectin.  A total of 509 differentially expressed proteins (DEPs) were identified by proteomics analysis.  The Gene Ontology (GO) enrichment analysis showed that the protein difference multiple in the nutritional repository activity was the largest among the molecular functions, and the up-regulated seed storage protein (SSP) played an active role in the response of grains to LT stress and subsequent damage.  The Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that LT stress reduced the expression of DEPs such as sucrose phosphate synthase (SPS), glucose-1-phosphate adenylyltransferase (glgC), and β-fructofuranosidase (FFase) in sucrose and starch metabolic pathways, thus affecting the synthesis of grain starch.  In addition, many heat shock proteins (HSPs) were found in the protein processing in endoplasmic reticulum pathways, which can resist some damage caused by LT stress.  These findings provide a new theoretical foundation for elucidating the underlying mechanism governing wheat yield development after exposure to LT stress in spring.

  • CHONG Zhi-li, WEI Yun-xiao, LI Kai-li, Muhammad Aneeq Ur Rahman, LIANG Cheng-zhen, MENG Zhi-gang, WANG Yuan, GUO San-dui, HE Liang-rong, ZHANG Rui
    Journal of Integrative Agriculture. 2024, 23(10): 0. https://doi.org/10.1016/j.jia.2023.05.037

    Leaves are the main places for photosynthesis and organic synthesis of cotton.  Leaf shape has important effects on the photosynthetic efficiency and canopy formation, thereby affecting cotton yield.  Previous studies have shown that LMI1 is the main gene regulating leaf shape. In this study, the LMI1 gene (LATE MERISTEM IDENTITY1) was inserted into the 35S promoter expression vector, and cotton plants overexpressing LMI1(OE) were obtained through genetical transformation.  Statistical analysis of the biological traits of T1 and T2 populations showed that compared to wild type (WT), OE plants had significant larger leaves, thicker stems and significantly increased dry weight.  Furthermore, plant sections of the main vein and petiole showed that the number of cell in those tissues of OE plants increased significantly.  In addition, RNA-seq analysis revealed differential expression of genes related to gibberellin synthesis and NAC gene family (genes containing the NAC domain) in OE and WT plants, suggesting that LMI1 is involved in secondary wall formation and cell proliferation, and promotes stem thickening.  Moreover, GO (Gene Ontology) analysis enriched the terms of calcium ion binding, and KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis enriched the terms of fatty acid degradation, phosphatidylinositol signal transduction system, and cAMP signal pathway.  These results suggested that LMI1 OE plants were responsive to gibberellin hormone signals, and altered messenger signal (cAMP, Ca2+) which amplified this function, to promote the stronger above ground vegetative growth.  This study found the LMI1 soared the nutrient growth in cotton, which is the basic for higher yield.

  • Yan Li, Xingkui An, Shuang Shan, Xiaoqian Pang, Xiaohe Liu, Yang Sun, Adel Khashaveh, Yong-jun Zhang
    Journal of Integrative Agriculture. 2024, 23(12): 0. https://doi.org/10.1016/j.jia.2024.03.043
    The mirid bug Apolygus lucorum (Hemiptera: Miridae) is a polyphagous pest that affects a wide range of host plants. Its control remains challenging mainly due to its rapid reproduction, necessitating an understanding of sex pheromone communication. The recognition of sex pheromones is vital for courtship and mating behaviors, and is mediated by various chemosensory-associated proteins. Among these, sensory neuron membrane protein (SNMP), a CD36-related protein, is suggested to play crucial roles in detecting sex pheromones. In this study, we employed transcriptomic and genomic data from A. lucorum and phylogenetic approaches, and identified four putative SNMP genes (AlucSNMP1a, AlucSNMP1b, AlucSNMP2a, and AlucSNMP2b) with full open reading frames. Expression analysis revealed the ubiquitous presence of AlucSNMP transcripts in multiple tissues, with only AlucSNMP1a exhibiting male-biased expression in the antennae, suggesting its potential role in male chemosensation. Functional analysis using the Xenopus oocyte expression system, coupled with two-electrode voltage clamp recording, demonstrated that the co-expression of AlucSNMP1a with specific pheromone receptors (PRs) and the co-receptor (Orco) significantly enhanced electrophysiological responses to sex pheromones compared to the co-expression of PRs and Orco alone. Moreover, the results indicated that the presence of AlucSNMP1a not only affected the responsiveness to sex pheromones but also influenced the kinetics (activation and inactivation) of the induced signals. In contrast, the co-expression of AlucSNMP1b with AlucPR/Orco complexes had no impact on the inward currents induced by two pheromone compounds. An examination of the selective pressures on SNMP1 genes across 20 species indicated strong purifying selection, implying potential functional conservation in various insects. These findings highlight the crucial role of AlucSNMP1a in the response to sex pheromones.
  • Agro-ecosystem & Environment
    Hubing Zhao, Guanfei Liu, Yingxia Dou, Huimin Yang, Tao Wang, Zhaohui Wang, Sukhdev Malhi, Adnan Anwar Khan
    Journal of Integrative Agriculture. 2024, 23(9): 3174-3185. https://doi.org/10.1016/j.jia.2024.01.008
    Amplifying drought stress and high precipitation variability impair dryland wheat production.  These problems can potentially be minimized by using plastic mulch (PM) or straw mulch (SM).  Therefore, wheat grain yield, soil water storage, soil temperature and water-use productivity of PM and SM treatments were compared with no mulch (CK) treatment on dryland wheat over a period of eight seasons.  Compared to the CK treatment, PM and SM treatments on average significantly increased grain yield by 12.6 and 10.5%, respectively.  Compared to the CK treatment, SM treatment significantly decreased soil daily temperature by 0.57, 0.60 and 0.48°C for the whole seasons, growing periods and summer fallow periods, respectively.  In contrast, compared to the CK treatment, PM treatment increased soil daily temperature by 0.44, 0.51 and 0.27°C for the whole seasons, growing periods and summer fallow periods, respectively.  Lower soil temperature under SM allowed greater soil water storage than under PM.  Soil water storage pre-seeding was 17% greater under the SM than under the PM treatment.  Soil water storage post-harvest was similar for the PM and SM treatments, but evapotranspiration was 4.5% higher in the SM than in the PM treatment.  Consequently, water-use productivity was 6.6% greater under PM than under the SM treatment.  Therefore, PM treatment increased dryland wheat yield and water-use productivity, while straw mulch increased soil water storage.


  • ZHENG Lan-jie, ZHANG Qian-long, LIU Hui-ying, WANG Xiao-qing, ZHANG Xiang-ge, HU Zhi-wei, LI Shi, JI Li, JI Man-chun, GU Yong, YANG Jia-heng, SHI Yong, HUANG Yu-bi, ZHENG Xu
    Journal of Integrative Agriculture. https://doi.org/10.1016/j.jia.2023.10.030
    Accepted: 2023-10-23

    Maize (Zea mays L.) is a monoecious grass species with separate male and female inflorescences which form the tassel and ear, respectively.  The mature ear inflorescences usually bear hundreds of grains, thus directly influence maize grain production and yield.  Here, we isolated a recessive maize mutant, tasselseed2016 (ts2016), which exhibits pleiotropic inflorescence defects and a reduction in grain yield.  These defects include loss of determinacy and identity in meristems and floral organs, as well as a lack of the lower floret abortion in maize ear, and the smaller grain size.  Using map-based cloning and allelic test, we identified and confirmed a microRNA gene MIR172e as the target gene controlling these related traits.  Furthermore, our evidence uncovered a new potential miR172e/ETHYLENE RESPONSIVE ELEMENT BINDING197 (EREB197) regulatory module which controls the abortion of lower floret in maize ear. Transcriptome analysis revealed that the mutation of MIR172e represses multiple biological processes, particularly the flower development and hormone-related pathways in maize ear.  Additionally, we found the mutation in the DNA sequence of MIR172e affects in RNA transcription, resulting in elongation blockage at the mutant site.  Our results reveal the function and molecular mechanism of MIR172e in maize inflorescences and grain yield, and this study deepens our knowledge of maize inflorescence development.

  • XU Ya-nan, WU Yue, HAN Yan, SONG Ji-qing, ZHANG Wen-ying, HAN Wei, LIU Bin-hui, BAI Wen-bo
    Journal of Integrative Agriculture. 2024, 23(1): 0. https://doi.org/10.1016/j.jia.2023.04.019

    Dry-hot wind stress causes losses in wheat productivity in major growing regions worldwide, especially for winter wheat in the Huang-Huai-Hai Plain of China, and both the occurrence and the severity of such events are likely to increase with global climate change.  To investigate the recovery of physiological function and yield formation using a non-commercial new chemical regulator (NCR) following dry-hot wind stress, we conducted a three-year field experiment (2018-2021), and sprayed tap water (control), monopotassium phosphate (CKP), NCR at both the jointing and flowering stage (CFS), and NCR only at the jointing stage (FSJ) or flowering stage (FSF).  The leaf physiology, biomass accumulation and translocation, grain-filling process, and yield components in winter wheat were investigated.  Among the single spraying treatments, the FSJ treatment was beneficial to accumulation of dry matter before anthesis, and to a larger increase of maximum grain-filling rate and mean grain-filling rate.  The FSF treatment performed better in maintaining a high relative chlorophyll content as SPAD value, and low rate of excised leaf water loss in flag leaves, promoting dry matter accumulation and contribution to grain after anthesis, prolonging the duration of grain filling, and inducing the period until maximum grain-filling rate to be reached earlier.  The CFS treatment was better than any other treatments in relieving effects of dry-hot wind.  The exogenous NCR treatments significantly increased grain yields by 12.45–18.20% in 2018–2019, 8.89–13.82% in 2019–2020, and 8.10–9.00% in 2020–2021.  The conventional measure of CKP treatment only increased grain yield by 6.69% in 2020–2021.  The CFS treatment had the greatest mitigating effect on loss of yield under dry-hot wind stress, following by the FSF and FSJ treatments, and the CKP treatment had a minimal effect.  In summary, the CFS treatment could be used as the main chemical control measure for wheat stress resistance and yield stability in areas with high incidence of dry-hot wind.  This can effectively regulate green retention and water status of leaves, promote dry matter accumulation and efficient translocation, improve grain-filling process, and ultimately reduce yield losses.

  • Horticulture
    Lin Chen, Chao Li, Jiahao Zhang, Zongrui Li, Qi Zeng, Qingguo Sun, Xiaowu Wang, Limin Zhao, Lugang Zhang, Baohua Li
    Journal of Integrative Agriculture. 2024, 23(7): 2255-2269. https://doi.org/10.1016/j.jia.2024.03.067

    Chinese cabbage is an important leafy vegetable crop with high water demand and susceptibility to drought stress.  To explore the molecular mechanisms underlying the response to drought, we performed a transcriptome analysis of drought-tolerant and -sensitive Chinese cabbage genotypes under drought stress, and uncovered core drought-responsive genes and key signaling pathways.  A co-expression network was constructed by a weighted gene co-expression network analysis (WGCNA) and candidate hub genes involved in drought tolerance were identified.  Furthermore, abscisic acid (ABA) biosynthesis and signaling pathways and their drought responses in Chinese cabbage leaves were systemically explored.  We also found that drought treatment increased the antioxidant enzyme activities and glucosinolate contents significantly.  These results substantially enhance our understanding of the molecular mechanisms underlying drought responses in Chinese cabbage.


  • Review
    LI Teng, ZHANG Xue-peng, LIU Qing, LIU Jin, CHEN Yuan-quan, SUI Peng
    Journal of Integrative Agriculture. 2022, 21(9): 2465-2476. https://doi.org/10.1016/j.jia.2022.07.013
    Maize (Zea mays L.) can exhibit yield penalties as a result of unfavorable changes to growing conditions.  The main threat to current and future global maize production is heat stress.  Maize may suffer from heat stress in all of the growth stages, either continuously or separately.  In order to manage the impact of climate driven heat stress on the different growth stages of maize, there is an urgent need to understand the similarities and differences in how heat stress affects maize growth and yield in the different growth stages.  For the purposes of this review, the maize growth cycle was divided into seven growth stages, namely the germination and seedling stage, early ear expansion stage, late vegetative growth stage before flowering, flowering stage, lag phase, effective grain-filling stage, and late grain-filling stage.  The main focus of this review is on the yield penalty and the potential physiological changes caused by heat stress in these seven different stages.  The commonalities and differences in heat stress related impacts on various physiological processes in the different growth stages are also compared and discussed.  Finally, a framework is proposed to describe the main influences on yield components in different stages, which can serve as a useful guide for identifying management interventions to mitigate heat stress related declines in maize yield.
  • Crop Science
    ZHAO Chun-hua, ZHANG Na, FAN Xiao-li, JI Jun, SHI Xiao-li, CUI Fa, LING Hong-qing, LI Jun-ming
    Journal of Integrative Agriculture. 2023, 22(9): 2603-2616. https://doi.org/10.1016/j.jia.2023.02.013
    The foundation parents play key roles in the genetic improvement of both yield potential and end-use quality in wheat.  Characterizing the genetic basis that underlies certain beneficial traits in the foundation parents will provide theoretical reference for molecular breeding by a design approach.  ‘Kenong 9204’ (KN9204) is a candidate foundation parent characterized by ideotype, high yield potential, and particularly high nitrogen fertilizer utilization.  To better understand the genetic basis of its high yield potential, high throughput whole-genome re-sequencing (10×) was performed on KN9204, its parental lines and its derivatives.  A high-resolution genetic composition map of KN9204 was constructed, which showed the parental origin of the favorable genomic segments based on the identification of excellent yield-related quantitative trait loci (QTL) from a bi-parental mapping population.  Xiaoyan 693 (XY693), a wheat–Thinopyrum ponticum partial amphidiploid, contributed a great deal to the high yield potential of KN9204, and three major stable QTLs from XY693 were fine mapped.  The transmissibility of key genomic segments from KN9204 to its derivatives were delineated, indicating that haplotype blocks containing beneficial gene combinations were conserved along with directional selection by breeders.  Evidence for selection sweeps in the breeding programs was identified.  This study provides a theoretical reference for the breeding of high-yield wheat varieties by a molecular design approach.
  • Crop Science
    CAO Peng-hui, WANG Di, GAO Su, LIU Xi, QIAO Zhong-ying, XIE Yu-lin, DONG Ming-hui, DU Tan-xiao, ZHANG Xian, ZHANG Rui, JI Jian-hui
    Journal of Integrative Agriculture. 2023, 22(3): 669-678. https://doi.org/10.1016/j.jia.2022.08.005

    Plant chlorophyll biosynthesis and chloroplast development are two complex processes that are regulated by exogenous and endogenous factors.  In this study, we identified OsDXR, a gene encoding a reductoisomerase that positively regulates chlorophyll biosynthesis and chloroplast development in rice.  OsDXR knock-out lines displayed the albino phenotype and could not complete the whole life cycle process.  OsDXR was highly expressed in rice leaves, and subcellular localization indicated that OsDXR is a chloroplast protein.  Many genes involved in chlorophyll biosynthesis and chloroplast development were differentially expressed in the OsDXR knock-out lines compared to the wild type.  Moreover, we found that the RNA editing efficiencies of ndhA-1019 and rpl2-1 were significantly reduced in the OsDXR knock-out lines.  Furthermore, OsDXR interacted with the RNA editing factor OsMORF1 in a yeast two-hybrid screen and bimolecular fluorescence complementation assay.  Finally, disruption of the plastidial 2-C-methyl-derythritol-4-phosphate pathway resulted in defects in chloroplast development and the RNA editing of chloroplast genes.

  • Crop Science
    LU Yan-li, SONG Gui-pei, WANG Yu-hong, WANG Luo-bin, XU Meng-ze, ZHOU Li-ping, WANG Lei
    Journal of Integrative Agriculture. 2023, 22(9): 2660-2672. https://doi.org/10.1016/j.jia.2023.03.002

    The physiological and metabolic differences in maize under different nitrogen (N) levels are the basis of reasonable N management, which is vital in improving fertilizer utilization and reducing environmental pollution.  In this paper, on the premise of defining the N fertilizer efficiency and yield under different long-term N fertilization treatments, the corresponding differential metabolites and their metabolic pathways were analyzed by untargeted metabolomics in maize.  N stress, including deficiency and excess, affects the balance of carbon (C) metabolism and N metabolism by regulating C metabolites (sugar alcohols and tricarboxylic acid (TCA) cycle intermediates) and N metabolites (various amino acids and their derivatives).  L-alanine, L-phenylalanine, L-histidine, and L-glutamine decreased under N deficiency, and L-valine, proline, and L-histidine increased under N excess.  In addition to sugar alcohols and the above amino acids in C and N metabolism, differential secondary metabolites, flavonoids (e.g., kaempferol, luteolin, rutin, and diosmetin), and hormones (e.g., indoleacetic acid, trans-zeatin, and jasmonic acid) were initially considered as indicators for N stress diagnosis under this experimental conditions.  This study also indicated that the leaf metabolic levels of N2 (120 kg ha–1 N) and N3 (180 kg ha–1 N) were similar, consistent with the differences in their physiological indexes and yields over 12 years.  This study verified the feasibility of reducing N fertilization from 180 kg ha–1 (locally recommended) to 120 kg ha–1 at the metabolic level, which provided a mechanistic basis for reducing N fertilization without reducing yield, further improving the N utilization rate and protecting the ecological environment.

  • Animal Science · Veterinary Medicine
    ZHAO Ruo-nan, CHEN Si-yuan, TONG Cui-hong, HAO Jie, LI Pei-si, XIE Long-fei, XIAO Dan-yu, ZENG Zhen-ling, XIONG Wen-guang
    Journal of Integrative Agriculture. 2023, 22(6): 1857-1869. https://doi.org/10.1016/j.jia.2022.11.006

    Antimicrobial resistance has become a global problem that poses great threats to human health.  Antimicrobials are widely used in broiler chicken production and consequently affect their gut microbiota and resistome.  To better understand how continuous antimicrobial use in farm animals alters their microbial ecology, we used a metagenomic approach to investigate the effects of pulsed antimicrobial administration on the bacterial community, antibiotic resistance genes (ARGs) and ARG bacterial hosts in the feces of broiler chickens.  Chickens received three 5-day courses of individual or combined antimicrobials, including amoxicillin, chlortetracycline and florfenicol.  The florfenicol administration significantly increased the abundance of mcr-1 gene accompanied by floR gene, while amoxicillin significantly increased the abundance of genes encoding the AcrAB-tolC multidrug efflux pump (marA, soxS, sdiA, rob, evgS and phoP).  These three antimicrobials all led to an increase in Proteobacteria.  The increase in ARG host, Escherichia, was mainly attributed to the β-lactam, chloramphenicol and tetracycline resistance genes harbored by Escherichia under the pulsed antimicrobial treatments.  These results indicated that pulsed antimicrobial administration with amoxicillin, chlortetracycline, florfenicol or their combinations significantly increased the abundance of Proteobacteria and enhanced the abundance of particular ARGs.  The ARG types were occupied by the multidrug resistance genes and had significant correlations with the total ARGs in the antimicrobial-treated groups.  The results of this study provide comprehensive insight into pulsed antimicrobial-mediated alteration of chicken fecal microbiota and resistome.

  • LI Chong, REN Yang-guang, ZHAO Yu-dian, ZHANG Zi-hao, ZHAI Bin, LI Jing, LI Qi, LI Guo-xi, LI Zhuan-jian, LIU Xiao-jun, KANG Xiang-tao, JIANG Rui-rui, TIAN Ya-dong, LI Dong-hua
    Journal of Integrative Agriculture. https://doi.org/10.1016/j.jia.2023.06.038
    Accepted: 2023-06-30

    Tissue factor pathway inhibitor 2 (TFPI2) plays a key role in female reproduction. However, its expression and function in chickens are still unclear. In the present study, ovarian tissues from 30 w and 15 w laying chickens were analyzed using RNA-seq to identify the differentially expressed gene TFPI2. The full-length cDNA of TFPI2 was obtained from adult chicken ovaries by rapid-amplification of cDNA ends (RACE), and the putative TFPI2 protein was found to share a highly conserved amino acid sequence with known bird homologs. In addition, TFPI2 was widely expressed in the tissues of adult chicken follicles according to quantitative real-time PCR (qRT‒PCR) and Western blotting. Immunohistochemistry suggested that the TFPI2 protein existed in chicken ovary follicles at different developmental states, such as primordial follicles, the ovarian stroma, and the granulosa and theca layers of prehierarchical follicles (6-8 mm) and preovulatory follicles (F1). In vitro, Follicle stimulating hormone or Luteinizing hormone (FSH/LH) stimulated the expression of TFPI2 in chicken granulosa cells. FSH-/LH-induced TFPI2 mRNA expression was mediated by signaling pathways such as the PKA, PKC, PI3K, and mTOR pathways. Functionally, TFPI2 promoted the proliferation and viability of cultured granulosa cells and decreased the secretion of Progesterone (P4) and Estrogen (E2) and the mRNA abundance of key steroidogenic enzymes (STAR, Cyp17a1, Cyp19a1 and 3B-HSD) as well as MMPs (MMP2, 7, 9 and 11). Mechanistically, TFPI2 inhibited the expression of MMP7 via the Wnt signaling pathway. These findings indicate that TFPI2 may play an important role in regulating chicken follicular development and ovulation and suggest the molecular regulation mechanisms.


  • Agricultural Economics and Management
    LI Shu-tian, DUAN Yu, GUO Tian-wen, ZHANG Ping-liang, HE Ping, Kaushik Majumdar
    Journal of Integrative Agriculture. 2018, 17(12): 2802-2812. https://doi.org/10.1016/S2095-3119(18)62074-X
    Field experiments were conducted in oil and edible sunflower to study the effects of potassium (K) fertilization on achene yield and quality, and to estimate the nutrient internal efficiency (IE) and nutrient requirement in sunflower production.  All trials in edible sunflower and 75% trials in oil sunflower showed positive yield responses to K fertilization.  Compared with control without K fertilization, the application of K increased achene yield by an average of 406 kg ha–1 for oil sunflower and 294 kg ha–1 for edible sunflower.  K application also increased 1 000-achene weight and kernel rate of both oil and edible sunflower.  K fertilization improved the contents of oil, oleic acid, linoleic acid and linolenic acid in achenes of oil sunflower, and increased contents of oil, total unsaturated fatty acid and protein in achenes of edible sunflower.  The average agronomic efficiency of K fertilizer was 4.0 for oil sunflower and 3.0 kg achene kg–1 K2O for edible sunflower.  The average IE of N, P and K under balanced NPK fertilization was 22.9, 82.8, and 9.9 kg kg–1 for oil sunflower, and 27.3, 138.9, and 14.3 kg kg–1 for edible sunflower.  These values were equivalent to 45.5, 14.1, and 108.1 kg, and 39.0, 8.0, and 71.7 kg of N, P and K, respectively, in above-ground dry matter required for production per ton of achenes.  The average harvest index of N, P and K was 0.47, 0.56 and 0.05 kg kg–1 in oil sunflower, and 0.58, 0.58 and 0.14 kg kg–1 in edible sunflower.   
  • Crop Science
    YAN Sheng-nan, YU Zhao-yu, GAO Wei, WANG Xu-yang, CAO Jia-jia, LU Jie, MA Chuan-xi, CHANG Cheng, ZHANG Hai-ping
    Journal of Integrative Agriculture. 2023, 22(9): 2617-2631. https://doi.org/10.1016/j.jia.2023.04.017
    Pre-harvest sprouting (PHS) adversely affects wheat quality and yield, and grain color (GC) is associated with PHS resistance.  However, the genetic relationship between GC and PHS resistance remains unclear.  In this study, 168 wheat varieties (lines) with significant differences in GC and PHS resistance were genotyped using an Illumina 90K iSelect SNP array.  Genome-wide association study (GWAS) based on a mixed linear model showed that 67 marker-trait associations (MTAs) assigned to 29 loci, including 17 potentially novel loci, were significantly associated with GC, which explained 1.1–17.0% of the phenotypic variation.  In addition, 100 MTAs belonging to 54 loci, including 31 novel loci, were significantly associated with PHS resistance, which accounted for 1.1–14.7% of the phenotypic variation.  Subsequently, two cleaved amplified polymorphic sequences (CAPS) markers, 2B-448 on chromosome 2B and 5B-301 on chromosome 5B, were developed from the representative SNPs of the major common loci Qgc.ahau-2B.3/Qphs.ahau-2B.4 controlling GC/PHS resistance and PHS resistance locus Qphs.ahau-5B.4, respectively.  Further validation in 171 Chinese mini-core collections confirmed significant correlations of the two CAPS markers with GC and PHS resistance phenotypes under different environments (P<0.05).  Furthermore, the wheat public expression database, transcriptomic sequencing, and gene allelic variation analysis identified TraesCS5B02G545100, which encodes glutaredoxin, as a potential candidate gene linked to Qphs.ahau-5B.4.  The new CAPS marker CAPS-356 was then developed based on the SNP (T/C) in the coding sequences (CDS) region of TraesCS5B02G545100.  The high-density linkage map of the Jing 411/Hongmangchun 21 recombinant inbred lines (RILs) constructed based on specific locus amplified fragment sequencing markers showed that CAPS-356 collocated with a novel QTL for PHS resistance, supporting the role of TraesCS5B02G545100 as the potential candidate gene linked to Qphs.ahau-5B.4.  These results provide valuable information for the map-based cloning of Qphs.ahau-5B.4 and breeding of PHS resistant white-grained varieties.
  • WANG Xing-long, ZHU Yu-peng, YAN Ye, HOU Jia-min, WANG Hai-jiang, LUO Ning, WEI Dan, MENG Qing-feng, WANG Pu
    Journal of Integrative Agriculture. 2023, 22(8): 0. https://doi.org/10.1016/j.jia.2023.02.012

    Elevating soil water content (SWC) through irrigation was one of the simple mitigation measures to improve crop resilience to heat stress.  The response of leaf function such as photosynthetic capacity based on chlorophyll fluorescence during the mitigation has received limited attention, especially in field condition. The 2-yr field experiment with three treatments (control treatment (CK); high temperature treatment (H); high temperature together with elevating SWC treatment (HW)) was carried out during grain filling with two maize hybrids at a typical station in North China Plain.  Averagely, the net photosynthetic rate (Pn) was improved by 20% in HW treatment and a 1-3°C decrease in canopy temperature compared with H treatment in two years. Furthermore, the higher SWC in HW treatment significantly improved actual photosynthetic rate (Phi2), linear electron flow (LEF), variable fluorescence (Fv) and maximal potential quantum efficiency (Fv/Fm) for both hybrids.  Meanwhile, different responses in chlorophyll fluorescence between hybrids were also observed.  The higher SWC in HW treatment significantly improved thylakoid proton conductivity (gH+) and maximal fluorescence (Fm) for the hybrid ZD958.  For the hybrid XY335, the proton conductivity of chloroplast ATP synthase (vH+) and minimal fluorescence (F0) was increased by the SWC.  The SEM model further showed that SWC had significantly positive relationships with Pn, LEF, and Fv/Fm.  The elevating SWC alleviated heat stress with the delayed leaf senescence to prolong the effective period of photosynthesis and enhanced leaf photosynthetic capacity by improving Phi2, LEF, Fv and Fv/Fm.  This research demonstrates that elevating SWC through enhancing leaf photosynthesis during grain filling would be an import mitigation measure to adapt to warming climate in maize production.

  • Animal Science · Veterinary Medicine
    Ambreen LEGHARI, Shakeel Ahmed LAKHO, Faiz Muhammad KHAND, Khaliq ur Rehman BHUTTO, Sameen Qayoom LONE, Muhammad Tahir ALEEM, Iqra BANO, Muhammad Ali CHANDIO, Jan Muhammad SHAH, LIN Hui-xing, FAN Hong-jie
    Journal of Integrative Agriculture. 2023, 22(5): 1514-1528. https://doi.org/10.1016/j.jia.2022.10.004

    Streptococcus agalactiae is one of the most common pathogens that cause bovine mastitis worldwide. Identifying pathogen prevalence and virulence factors is critical for developing prevention and control approaches. Herein, 1161 milk samples from various dairy farms in China (n=558) and Pakistan (n=603) were collected between 2019-2021 and were subjected to S. agalactiae isolation. Prevalence, serotyping, virulence genes, and antibiotic-resistant genes of S. agalactiae were evaluated by PCR assay. All isolates were characterized for haemolysis, biofilm production, cytotoxicity, adhesion, and invasion on bovine mammary epithelial cells. The prevalence of S. agalactiae-induced mastitis in cattle was found to be considerably higher in Pakistan than in China. Jiangsu and Sindh provinces had the highest area-wise prevalence in China and Pakistan, respectively. Serotypes Ia and II were prevalent in both countries, whereas serotype III was found only in Pakistan. Moreover, all isolates tested positive for PI-2b gene but negative for PI-1 and PI-2a genes. All isolates harboured cfb, cylE, hylB, and fbsB virulent genes, whereas many of them lacked bibA, rib and bca. However, the absence of bac and scp genes in Chinese isolates and cspA in Pakistani isolates was noted, while spb1 and lmb were not detected in isolates of both countries. Pakistani isolates, particularly serotype Ia-positive, had a considerably higher ability to produce biofilm, haemolysis, cytotoxicity, adhesion, and invasion than Chinese isolates. Most of the isolates were phenotypically resistant to tetracycline, erythromycin, and clindamycin and genotypic resistance was confirmed by the presence of ermA, ermB, tetM and tetO genes. Our study highlights the antimicrobial resistance profile and virulence-related factors contributing to the epidemiological spread of mastitis-causing S. agalactiae in China and Pakistan. The findings may facilitate future studies designed to develop improved treatment and control strategies against this pathogen. 

  • Crop Science
    WANG Xiao-dong, CAI Ying, PANG Cheng-ke, ZHAO Xiao-zhen, SHI Rui, LIU Hong-fang, CHEN Feng, ZHANG Wei, FU San-xiong, HU Mao-long, HUA Wei, ZHENG Ming, ZHANG Jie-fu
    Journal of Integrative Agriculture. 2023, 22(10): 2981-2992. https://doi.org/10.1016/j.jia.2023.02.017

    Plant height is a key plant architectural trait that affects the seed yield, harvest index and lodging resistance in Brassica napus L., although the genetic mechanisms affecting plant height remain unclear.  Here, a semi-dwarf mutant, df34, was obtained by ethyl methanesulphonate-induced mutagenesis.  Genetic analysis showed that the semi-dwarf phenotype is controlled by one semi-dominant gene, which was located on chromosome C03 using a bulked segregant analysis coupled with whole-genome sequencing, and this gene was named BnaSD.C3.  Then BnaSD.C3 was fine-mapped to a 297.35-kb segment of the “Darmor-bzh” genome, but there was no potential candidate gene for the semi-dwarf trait underlying this interval.  Furthermore, the interval was aligned to the Zhongshuang 11 reference genome.  Finally, combining structural variation analysis, transcriptome sequencing, phytohormone analyses and gene annotation information, BnaC03G0466900ZS and BnaC03G0478900ZS were determined to be the most likely candidate genes affecting the plant height of df34.  This study provides a novel major locus for breeding and new insights into the genetic architecture of plant height in Bnapus

  • Review
    Shahid Ullah Khan, Ahmad Ali, Sumbul Saeed, Yonghai Fan, Ali Shehazd, Hameed Gul, Shah Fahad, Kun Lu
    Journal of Integrative Agriculture. 2024, 23(11): 3623-3640. https://doi.org/10.1016/j.jia.2024.02.013

    Rapeseed (Brassica napus L.) is the second most widely grown premium oilseed crop globally, mainly for its vegetable oil and protein meal.  One of the main goals of breeders is producing high-yield rapeseed cultivars with sustainable production to meet the requirements of the fast-growing population.  Besides the pod number, seeds per silique (SS), and thousand-seed weight (TSW), the ovule number (ON) is a decisive yield determining factor of individual plants and the final seed yield.  In recent years, tremendous efforts have been made to dissect the genetic and molecular basis of these complex traits, but relatively few genes or loci controlling these traits have been reported thus far.  This review highlights the updated information on the hormonal and molecular basis of ON and development in model plants (Arabidopsis thaliana).  It also presents what is known about the hormonal, molecular, and genetic mechanism of ovule development and number, and bridges our understanding between the model plant species (Athaliana) and cultivated species (Bnapus).  This report will open new pathways for primary and applied research in plant biology and benefit rapeseed breeding programs.  This synopsis will stimulate research interest to further understand ovule number determination, its role in yield improvement, and its possible utilization in breeding programs. 

  • Mansoor SHEIKH, Farooq IQRA, Hamadani AMBREEN, Kumar A PRAVIN, Manzoor IKRA, Yong Suk CHUNG
    Journal of Integrative Agriculture. 2024, 23(06): 0. https://doi.org/10.1016/j.jia.2023.10.019

    Crop improvement is crucial for addressing the global challenges of food security and sustainable agriculture.  Recent advancements in high-throughput phenotyping technologies and artificial intelligence (AI) have revolutionized the field, enabling rapid and accurate assessment of crop traits on a large scale.  The integration of AI and machine learning algorithms with high-throughput phenotyping data has unlocked new opportunities for crop improvement.  AI algorithms can analyze and interpret large datasets, extracting meaningful patterns and correlations between phenotypic traits and genetic factors.  These technologies have the potential to revolutionize plant breeding programs by providing breeders with efficient and accurate tools for trait selection, reducing the time and cost required for variety development.  However, further research and collaborations are needed to overcome the challenges and fully unlock the power of high-throughput phenotyping and AI in crop improvement.  By leveraging AI algorithms, researchers can efficiently analyze phenotypic data, uncover complex patterns, and establish predictive models that enable precise trait selection and crop breeding.  The aim of this review is to explore the transformative potential of integrating high-throughput phenotyping and AI in crop improvement.  The review will encompass an in-depth analysis of recent advancements and applications, highlighting the numerous benefits and challenges associated with high-throughput phenotyping and intelligence.

  • Crop Science
    SHA Xiao-qian, GUAN Hong-hui, ZHOU Yu-qian, SU Er-hu, GUO Jian, LI Yong-xiang, ZHANG Deng-feng, LIU Xu-yang, HE Guan-hua, LI Yu, WANG Tian-yu, ZOU Hua-wen, LI Chun-hui
    Journal of Integrative Agriculture. 2023, 22(11): 3394-3407. https://doi.org/10.1016/j.jia.2023.04.022
    The crown root system is the most important root component in maize at both the vegetative and reproductive stages.  However, the genetic basis of maize crown root traits (CRT) is still unclear, and the relationship between CRT and aboveground agronomic traits in maize is poorly understood.  In this study, an association panel including 531 elite maize inbred lines was planted to phenotype the CRT and aboveground agronomic traits in different field environments.  We found that root traits were significantly and positively correlated with most aboveground agronomic traits, including flowering time, plant architecture and grain yield.  Using a genome-wide association study (GWAS) coupled with resequencing, a total of 115 associated loci and 22 high-confidence candidate genes were identified for CRT.  Approximately one-third of the genetic variation in crown root was co-located with 46 QTLs derived from flowering and plant architecture.  Furthermore, 103 (89.6%) of 115 crown root loci were located within known domestication- and/or improvement-selective sweeps, suggesting that crown roots might experience indirect selection in maize during domestication and improvement.  Furthermore, the expression of Zm00001d036901, a high-confidence candidate gene, may contribute to the phenotypic variation in maize crown roots, and Zm00001d036901 was selected during the domestication and improvement of maize.  This study promotes our understanding of the genetic basis of root architecture and provides resources for genomics-enabled improvements in maize root architecture.

  • CHANG Ya-nan, LIU Jun-xian, LIU Chang, LIU Hui-yun, TANG Hua-li, QIU Yu-liang, LIN Zhi-shan, WANG Ke, YAN Yue-ming, YE Xing-guo
    Journal of Integrative Agriculture. 2024, 23(06): 0. https://doi.org/10.1016/j.jia.2023.06.021

    Wheat relative species are important for agriculture production, functional genomics study and wheat improvement as useful genetic resources.  In this study, a regeneration related wheat gene TaWOX5 was applied to establish the Agrobacterium-mediated transformation systems of Triticum monococcum, hexaploid triticale, and rye (Secale cereale L.) using their immature embryos.  Transgenic plants were efficiently generated.  During the transformation process, the Agrobacterium infection efficiency was assessed by histochemical staining for β-glucuronidase (GUS).  Finally, the transgenic nature of regenerated plants was verified by polymerase chain reaction (PCR)-based genotyping for presence of the GUS and bialaphos resistance (bar) genes, histochemical staining for GUS protein, and QuickStix strip assay for bar protein. The transformation efficiency of T. monococcum genotype PI428182 was 94.4%; the efficiencies of four hexaploid triticale genotypes Lin456, ZS3297, ZS1257, and ZS3224 were 52.1, 41.2, 19.4, and 16.0%, respectively; the transformation efficiency of rye cultivar Lanzhou Heimai was 7.8%.  Fluorescence in situ hybridization (FISH) and genomic in situ hybridization (GISH) analysis indicated that the GUS transgenes were integrated into the distal or near centromere (proximal) region of the chromosomes in transgenic T. monococcum and hexaploid triticale plants; in the transgenic hexaploid triticale plants, the foreign DNA fragment was randomly integrated into the AABB genome and RR genome.  Furthermore, the transgene was proved to be almost stably inherited in the next generation by Mendel’s law.  The findings in this study will promote genetic improvement for grain or forage production of the three plant species and for functional genomics study of cereal species including wheat.

  • Crop Science
    GAO Ri-xin, HU Ming-jian, ZHAO Hai-ming, LAI Jin-sheng, SONG Wei-bin
    Journal of Integrative Agriculture. 2022, 21(9): 2492-2507. https://doi.org/10.1016/j.jia.2022.07.007

    Ear-related traits are often selection targets for maize improvement.  This study used an immortalized F2 (IF2) population to elucidate the genetic basis of ear-related traits.  Twelve ear-related traits (namely, row number (RN), kernel number per row (KNPR), ear length (EL), ear diameter (ED), ten-kernel thickness (TKT), ear weight (EW), cob diameter (CD), kernel length (KL), kernel width (KW), grain weight per ear (GW), 100-kernel weight (HKW), and grain yield per plot (GY)), were collected from the IF2 population.  The ear-related traits were comprised of 265 crosses derived from 516 individuals of the recombinant inbred lines (RILs) under two separated environments in 2017 and 2018, respectively.  Quantitative trait loci (QTLs) analyses identified 165 ear traits related QTLs, which explained phenotypic variation ranging from 0.1 to 12.66%.  Among the 165 QTLs, 19 underlying nine ear-related traits (CD, ED, GY, RN, TKT, HKW, KL, GW, and KNPR) were identified across multiple environments and recognized as reliable QTLs.  Furthermore, 44.85% of the total QTLs showed an overdominance effect, and 12.72% showed a dominance effect. Additionally, we found 35 genomic regions exhibiting pleiotropic effects across the whole maize genome, and 17 heterotic loci (HLs) for RN, EL, ED and EW were identified.  The results provide insights into genetic components of ear-related traits and enhance the understanding of the genetic basis of heterosis in maize. 

  • Deng Jin-sheng, Huang Wei-qi, Zhou Guo-xiong, Hu Ya-hui, Li Liu-jun, Wang Yan-feng
    Journal of Integrative Agriculture. 2024, 23(10): 0. https://doi.org/10.1016/j.jia.2023.11.037

    Banana is a significant crop, and three banana leaf diseases, including Sigatoka, Cordana and Pestalotiopsis, have the potential to have a serious impact on banana production. Existing studies are insufficient to provide a reliable method for accurately identifying banana leaf diseases. Therefore, this paper proposes a novel method to identify banana leaf diseases. First, a new algorithm called K-scale VisuShrink algorithm (KVA) is proposed to denoise banana leaf images. The proposed algorithm introduces a new decomposition scale k based on the semi-soft and middle course thresholds, the ideal threshold solution is obtained and substituted with the newly established threshold function to obtain a less noisy banana leaf image. Then, this paper proposes a novel network for image identification called Ghost ResNeSt-Attention RReLU-Swish Net (GR-ARNet) based on Resnet50. In this, the Ghost Module is implemented to improve the network's effectiveness in extracting deep feature information on banana leaf diseases and the identification speed; the ResNeSt Module adjusts the weight of each channel, increasing the ability of banana disease feature extraction and effectively reducing the error rate of similar disease identification; the model's computational speed is increased using the hybrid activation function of RReLU and Swish. Our model achieves an average accuracy of 96.98% and a precision of 89.31% applied to 13021 images, demonstrating that the proposed method can effectively identify banana leaf diseases.

  • Horticulture
    XU Yi, HUANG Dong-mei, MA Fu-ning, YANG Liu, WU Bin, XING Wen-ting, SUN Pei-guang, CHEN Di, XU Bing-qiang, SONG Shun
    Journal of Integrative Agriculture. 2023, 22(5): 1412-1423. https://doi.org/10.1016/j.jia.2023.03.005

    Passion fruit (Passiflora edulis Sims) is a vine of the Passiflora genus in the Passifloraceae family.  The extracted components include flavonoids and terpenoids, which have good anti-anxiety and anti-inflammatory effects in humans.  In this study, we analyzed the transcriptomes of four tissues of the ‘Zixiang’ cultivar using RNA-Seq, which provided a dataset for functional gene mining.  The de novo assembly of these reads generated 96 883 unigenes, among which 61 022 unigenes were annotated (62.99% yield).  In addition to its edible value, another important application of passion fruit is its medicinal value.  The flavonoids and terpenoids are mainly derivatives of luteolin, apigenin, cycloartane triterpenoid saponins and other active substances in leaf extracts.  A series of candidate unigenes in the transcriptome data that are potentially involved in the flavonoid and terpenoid synthesis pathways were screened using homology-based BLAST and phylogenetic analysis.  The results showed that the biosynthesis of triterpenoids in passion fruit comes from the branches of the mevalonate (MVA) and 2-C-methyl-D-erythritol 4-phosphate/1-deoxy-D-xylulose 5-phosphate (MEP/DOXP) pathways, which is different from the MVA pathway that is used in other fruit trees.  Most of the candidate genes were found to be highly expressed in the leaves and/or flowers.  Quantitative real-time PCR (qRT-PCR) verification was carried out and confirmed the reliability of the RNA-Seq data.  Further amplification and functional analysis of these putative unigenes will provide additional insight into the biosynthesis of flavonoids and terpenoids in passion fruit.

  • Crop Science
    GAO Hua-wei, SUN Ru-jian, YANG Meng-yuan, YAN Long, HU Xian-zhong, FU Guang-hui, HONG Hui-long, GUO Bing-fu, ZHANG Xiang, LIU Li-ke, ZHANG Shu-zhen, QIU Li-juan
    Journal of Integrative Agriculture. 2022, 21(9): 2508-2520. https://doi.org/10.1016/j.jia.2022.07.004

    Phenotypic screening of soybean germplasm suitable for high planting density is currently the most viable strategy to increase yield.  Previous studies have shown that soybean varieties with dwarf features and a short petiole often exhibit a compact plant architecture which could improve yield through increased planting density, although previously reported short petiole accessions were ultimately not usable for breeding in practice.  Here, we established a method to assess petiole length and identified an elite mutant line, M657, that exhibits high photosynthetic efficiency.  The agronomic traits of M657 were evaluated under field conditions, and appeared to be stable for short petiole across seven locations in northern, Huang–Huai, and southern China from 2017 to 2018.  Compared with the Jihuang 13 wild type, the mutant M657 was shorter in both petiole length and plant height, exhibited lower total area of leaf, seed weight per plant and 100-seed weight, but had an increased number of effective branches and the growth period was prolonged by 2–7 days.  Using M657 as a parental line for crosses with four other elite lines, we obtained four lines with desirable plant architecture and yield traits, thus demonstrating the feasibility of adopting M657 in breeding programs for soybean cultivars of high density and high yield.

  • Plant Protection
    LÜ Jing, Satyabrata NANDA, CHEN Shi-min, MEI Yang, HE Kang, QIU Bao-li, ZHANG You-jun, LI Fei, PAN Hui-peng
    Journal of Integrative Agriculture. 2022, 21(9): 2665-2674. https://doi.org/10.1016/j.jia.2022.07.015

    The specificity of the double-stranded RNA (dsRNA) used in the RNA interference (RNAi) technique is crucial for the success of sequence-specific gene silencing.  Currently, RNAi-mediated insect control is a trending research topic.  However, the off-target effects of the dsRNA in RNAi are a major concern.  In this study, the dsHvβ´COPI (coat protein complex I, β´ subunit)-treated and untreated transcriptomes of the 28-spotted potato lady beetle (Henosepilachna vigintioctopunctata) were compared to understand its off-target gene silencing effects.  The RNA-seq results revealed that 63 and 44 differentially expressed genes (DEGs) were upregulated and downregulated, respectively, in the dsHvβ´COPI treated group as compared with the control.  Validation of the differential expressions of some selected DEGs via reverse transcription-quantitative PCR (RT-qPCR) analysis confirmed the reliability of the transcriptome analysis results.  Further downstream analysis revealed that there were no genes homologous with Hvβ´COPI in Hvigintioctopunctata.  Additionally, no genes with a >11 bp continuous match with dsHvβ´COPI were found in the Hvigintioctopunctata transcriptome.  Six genes (Hvcitron, Hvhelicase, Hvtransposase, Hvserine, Hvdynein, and HvE3 ubiquitin) were selected to examine the off-target activity of dsHvβ´COPI based on their potential involvement in various Hvigintioctopunctata metabolic pathways.  The severity of silencing these six off-target genes was evaluated by employing RNAi.  The RNAi results confirmed the downregulation of the expression of all six genes, although there was no significant lethality.  The findings of this study will be helpful in the risk analysis of future RNAi-mediated pest control experiments.

  • Animal Science · Veterinary Medicine
    MA Yu-chen, CHEN Hua-yuan, GAO Shen-yan, ZHANG Xiao-zhan, LI Yong-tao, YANG Xia, ZHAO Jun, WANG Zeng
    Journal of Integrative Agriculture. 2023, 22(7): 2213-2220. https://doi.org/10.1016/j.jia.2022.12.015
    Type I interferon (IFN-I) provides an important first line to protect avian species against pathogens invasion. IFN regulatory factor 7 (IRF7) has been identified as the most important regulator for both DNA and RNA virus-induced IFN-I production in chickens. Although four splicing variants of IRF7 have been identified in mammals, it is still unclear whether alternative splicing patterns and the function of IRF7 isoform(s) exist in chickens. In this study, we reported a novel short transcript isoform of chicken IRF7 (chIRF7), termed chIRF7-iso, which contained an intact N-terminal DNAbinding domain (DBD) and 14 amino acids different from chIRF7 in the C-terminal. Overexpression of chIRF7 in chicken leghorn male hepatocellular (LMH) cells activated the IFN-β promoter and significantly inhibited Newcastle disease virus (NDV) and fowl adenovirus serotype 4 (FAdV-4) replication. Conversely, overexpression of chIRF7-iso blocked the IFN-β promoter activity and was favorable for NDV and FAdV-4 replication in vitro. Collectively, our results confirm that a novel chIRF7 isoform-mediated negative regulates IFN-β production, which will contribute to understanding the role of chIRF7 in innate antiviral response in chicken.
  • Plant Protection
    REN Cong, ZHANG Jie, YUAN Jin-xi, WU Yun-qi-qi-ge, YAN Shan-chun, LIU Wei, WANG Gui-rong
    Journal of Integrative Agriculture. 2023, 22(9): 2772-2782. https://doi.org/10.1016/j.jia.2023.04.025

    The oriental fruit fly, Bactrocera dorsalis (Hendel), is a devastating pest of citrus fruits.  After successful mating, adult females insert their eggs into the ripened fruit, resulting in moldy and rotten fruit and causing great economic losses for the citrus industry.  In the field, flies initiate copulatory behaviors as twilight approaches, and decreasing light intensity in this period is the normal stimulus for copulation.  In this study, ten light intensities ranging from 0–30 000 lux were set to identify the typical intensity that strongly regulates the copulation behavior of Bdorsalis.  Three light intensities found to regulate the copulation behavior were then selected to verify their effects on adult male wing fanning and female chemotaxis towards 2,3,5-trimethylpyrazine (TMP).  At last, strong light and complete darkness were artificially combined in the lab to verify whether they could prevent copulation to inform behavioral manipulation of oriental flies in the future.  The results indicated that adult flies generally initiated copulatory behaviors at low light intensity (<1 000 lux).  
    Stronger light significantly prevented copulation in proportion to intensity, with nearly no copulation events initiated when light intensity was above 20 000 lux.  Both male wing fanning and female chemotaxis towards TMP were attenuated as light intensity became stronger.  However, at 10 000 lux, males still fanned their wings to a certain extent while TMP completely lost its attractiveness to females.  In the darkness, adults did not initiate any sexual behaviors, e.g., copulation, wing fanning, or chemotaxis to TMP.  One hour of strong light (10 000 lux) combined with continuous darkness completely prevented mating.  These results show that light condition is an essential factor for copulatory behaviors in the oriental fruit fly.  Researchers could thus manipulate light conditions artificially or disrupt the molecular target in flies’ light transduction pathway to develop environmentally-friendly techniques to control this pest.

  • Plant Protection
    ZHANG Hao-yang, YANG Yan-fang, GUO Feng, SHEN Xiao-rui, LU Shan, CHEN Bao-sha
    Journal of Integrative Agriculture. 2023, 22(7): 2126-2137. https://doi.org/10.1016/j.jia.2022.10.006
    Sugarcane smut caused by Sporisorium scitamineum is a destructive disease responsible for significant losses in sugarcane production worldwide. However, the mechanisms underlying the pathogenicity of this fungus remain largely unknown. In this study, we found that the disruption of the SsRSS1 gene, which encodes a salicylic acid (SA) sensing regulator, does not affect phenotypic traits such as the morphology, growth rate, and sexual mating ability of haploid basidiospores, but rather reduces the tolerance of basidiospores to SA stress by blocking the induction of SsSRG1, a gene encoding a SA response protein in S. scitamineum. SsRSS1 deletion resulted in the attenuation of the virulence of the fungus. In addition to a significant reduction in whip formation, a portion of plantlets (18.3%) inoculated with the ΔSsRSS1 strains were found to be infected but failed to produce whips for up to 90 days post-inoculation. However, the development of hyphae and teliospore from the ΔSsRSS1-infected plants that formed whips seemed indistinguishable from that in the wild-type-infected plants. Combined, our findings suggested that SsRss1 is required for maintaining fungal fitness in planta by counteracting SA stress.
  • Crop Science
    TAO Jian-bin, ZHANG Xin-yue, WU Qi-fan, WANG Yun
    Journal of Integrative Agriculture. 2023, 22(6): 1645-1657. https://doi.org/10.1016/j.jia.2022.10.008
    Large-scale crop mapping using remote sensing data is of great significance for agricultural production, food security and the sustainable development of human societies. Winter rapeseed is an important oil crop in China that is mainly distributed in the Yangtze River Valley. Traditional winter rapeseed mapping practices are insufficient since they only use the spectral characteristics during the critical phenological period of winter rapeseed, which are usually limited to a small region and cannot meet the needs of large-scale applications. In this study, a novel phenology-based winter rapeseed index (PWRI) was proposed to map winter rapeseed in the Yangtze River Valley. PWRI expands the date window for distinguishing winter rapeseed and winter wheat, and it has good separability throughout the flowering period of winter rapeseed. PWRI also improves the separability of winter rapeseed and winter wheat, which traditionally have been two easily confused winter crops. A PWRI-based method was applied to the Middle Reaches of the Yangtze River Valley to map winter rapeseed on the Google Earth Engine platform. Time series composited Sentinel-2 data were used to map winter rapeseed with 10 m resolution. The mapping achieved a good result with overall accuracy and kappa coefficients exceeding 92% and 0.85, respectively. The PWRI-based method provides a new solution for high spatial resolution winter rapeseed mapping at a large scale.
  • WANG Kang-xu , ZHANG Ke-rou , CAO Cou-gui, JIANG Yang
    Journal of Integrative Agriculture. 2023, 22(8): 0. https://doi.org/10.1016/j.jia.2023.01.001
    Transgene escape could lead to genetically modified rice establishing wild populations in the natural environment, where they would compete for survival space with weeds. However, whether the expression of Bacillus thuringiensis (Bt) gene in rice will alter the relationship between transgene plants and weeds and induce undesirable environmental consequences are poorly understood. Thus, field experiments were conducted to investigate the weed competitiveness and assess the ecological risk of transgenic Bt rice under herbicide-free and lepidopterous pest controlled environment. Results showed that weed-rice competition in direct seeding field (DS) was earlier and more serious than that in transplanting field (TP), which resulted in the significant decrease of biomass and yield in DS. However, the yield between conventional Bt and non-Bt rice was not significant difference. The weed number, weed coverage ratio and weed diversity of conventional Bt rice were significantly higher than those of non-Bt rice at the early growth stage and mature stage, especially in DS plots, suggesting that Bt traits did not increase the weed competitiveness of transgenic rice and had no negative effect on weed diversity. Grain yield and weed number varied between different hybrid rice lines, but those differences were not significant between Bt and non-Bt rice. The number of insects increased with the increase of weeds in hybrid rice plots, whereas the insect number and diversity did not display a significant difference between Bt and non-Bt rice. Therefore, the ecological risk of transgenic Bt rice is comparable to non-Bt rice.
  • Review
    YANG Ning, YANG Dan-dan, YU Xu-chen, XU Cao
    Journal of Integrative Agriculture. 2023, 22(4): 959-971. https://doi.org/10.1016/j.jia.2023.03.007

    Natural rubber (NR) is an irreplaceable biopolymer of economic and strategic importance owing to its unique physical and chemical properties.  The Pará rubber tree (Hevea brasiliensis (Willd. ex A. Juss.) Müll. Arg.) is currently the exclusive commercial source of NR, and it is primarily grown in plantations restricted to the tropical and subtropical areas of Southeast Asia.  However, current Pará rubber production barely meets the sharply increasing global industrial demand for rubber.  Petroleum-based synthetic rubber (SR) has been used to supplement the shortage of NR but its industrial performance is not comparable to that of NR.  Thus, there is an urgent need to develop new productive rubber crops with broader environmental adaptability.  This review summarizes the current research progress on alternative rubber-producing plants, including horticultural plants (Taraxacum kok-saghyz Rodin and Lactuca L. species), woody plants (Parthenium argentatum A. Gray and Eucommia ulmoides Oliv.), and other plant species with potential for NR production.  With an emphasis on the molecular basis of NR biosynthesis revealed by a multi-omics approach, we highlight new integrative strategies and biotechnologies for exploring the mechanism of NR biosynthesis with a broader scope, which may accelerate the breeding and improvement of new rubber crops. 

  • YANG Hong-jun, YE Wen-wu, YU Ze, SHEN Wei-liang, LI Su-zhen, WANG Xing, CHEN Jia-jia, WANG Yuan-chao, ZHENG Xiao-bo
    Journal of Integrative Agriculture. 2023, 22(8): 0. https://doi.org/10.1016/j.jia.2023.01.006
    Plant-associated microbes represent a key determinant of plant fitness through acquiring nutrients, promoting growth, and resisting to abiotic and biotic stresses. However, an extensive characterization of the bacterial and fungal microbiomes present in different plant compartments of soybean in field conditions has remained elusive. In this study,we investigated the effects of four niches (roots, stems, leaves, and pods), four genotypes (Andou203, Hedou12, Sanning16, and Zhonghuang13), and three field locations (Jining, Suzhou, and Xuzhou) on the diversity and composition of bacterial and fungal communities in soybean using 16S and internal transcribed spacer rRNA amplicon sequencing,respectively. The soybean microbiome significantly differed across organs.Host genotypes explained more variation in stem bacterial community composition and leaf fungal community composition.Field location significantly affected the composition of bacterial communities in all compartments and the effects were stronger in the root and stem than in the leaf and pod, whereas field location explained more variation in stem and leaf fungal community composition than in the root and pod. The relative abundances of potential soybean fungal pathogens also differed among host organs and genotypes, reflecting the niches of these microbes in the host and probably their compatibility to the host genotypes. Systematic profiling of the microbiome composition and diversity will aid the development of plant protection technologies to benefit soybean health.
  • Crop Science
    LI Meng-wei, HE Yu-hua, LIU Rong, LI Guan, WANG Dong, JI Yi-shan, YAN Xin, HUANG Shu-xian, WANG Chen-yu, MA Yu, LIU Bei, YANG Tao, ZONG Xu-xiao
    Journal of Integrative Agriculture. 2023, 22(9): 2648-2659. https://doi.org/10.1016/j.jia.2023.01.003
    Owing to the limitation of a large genome size (~13 Gb), the genetic and gene mapping studies on faba bean (Vicia faba L.) are lagging far behind those for other legumes.  In this study, we selected three purified faba bean lines (Yundou 8137, H0003712, and H000572) as parents and constructed two F2 populations.  These two F2 populations, namely 167 F2 plants in Pop1 (Yundou 8137×H0003712) and 204 F2 plants in Pop2 (H000572×Yundou 8137), were genotyped using a targeted next-generation sequencing (TNGS) genotyping platform, and two high-density single nucleotide polymorphisms (SNP) genetic linkage maps of faba bean were constructed.  The map constructed from Pop1 contained 5 103 SNPs with a length of 1 333.31 cM and an average marker density of 0.26 cM.  The map constructed from Pop2 contained 1 904 SNPs with a greater length of 1 610.61 cM.  In these two F2 populations, QTL mapping identified 98 QTLs for 14 agronomic traits related to the flowers, pods, plant types and grains.  The two maps were then merged into an integrated genetic linkage map containing 6 895 SNPs, with a length of 3 324.48 cM.  These results not only lay the foundation for fine mapping and map-based cloning of related genes, but can also accelerate the molecular marker-assisted breeding of faba bean.
  • Agro-ecosystem & Environment
    ZHANG Nai-yu, WANG Qiong, ZHAN Xiao-ying, WU Qi-hua, HUANG Shao-min, ZHU Ping, YANG Xue-yun, ZHANG Shu-xiang
    Journal of Integrative Agriculture. 2022, 21(12): 3626-3636. https://doi.org/10.1016/j.jia.2022.08.012

    Understanding the characteristics and influences of various factors on phosphorus (P) fractions is of significance for promoting the efficiency of soil P.  Based on long-term experiments on black soil, fluvo-aquic soil, and loess soil, which belong to Phaeozems, Cambisols, and Anthrosols in the World Reference Base for Soil Resources (WRB), respectively, five fertilization practices were selected and divided into three groups: no P fertilizer (CK/NK), balanced fertilizer (NPK/NPKS), and manure plus mineral fertilizer (NPKM).  Soil inorganic P (Pi) fractions and soil properties were analyzed to investigate the characteristics of the Pi fractions and the relationships between Pi fractions and various soil properties.  The results showed that the proportion of Ca10-P in the sum of total Pi fractions was the highest in the three soils, accounting for 33.5% in black soil, 48.8% in fluvo-aquic soil, and 44.8% in loess soil.  Long-term fertilization practices resulted in periodic changes in soil Pi accumulation or depletion.  For black soil and fluvo-aquic soil, the Pi accumulation was higher in the late period (10–20 years) of fertilization than in the early period (0–10 years) under NPK/NPKS and NPKM, whereas the opposite result was found in loess soil.  The Pi accumulation occurred in all Pi fractions in black soil; mainly in Ca8-P, Fe-P, and Ca10-P in fluvo-aquic soil; and in Ca2-P, Ca8-P, and O-P in loess soil.  Under CK/NK, the soil Pi was depleted mainly in the early period in each of the three soils.  In addition to the labile Pi (Ca2-P) and moderately labile Pi (Ca8-P, Fe-P, Al-P), the Ca10-P in black soil and fluvo-aquic soil and O-P in loess soil could also be used by crops.  Redundancy analysis showed that soil properties explained more than 90% of the variation in the Pi fractions in each soil, and the explanatory percentages of soil organic matter (SOM) were 43.6% in black soil, 74.6% in fluvo-aquic, and 38.2% in loess soil.  Consequently, decisions regarding the application of P fertilizer should consider the accumulation rate and the variations in Pi fractions driven by soil properties in non-acidic soils.

  • Animal Science · Veterinary Medicine
    JIANG Yong, MA Xin-yan, XIE Ming, ZHOU Zheng-kui, TANG Jing, CHANG Guo-bin, CHEN Guo-hong, HOU Shui-sheng
    Journal of Integrative Agriculture. 2022, 21(9): 2691-2699. https://doi.org/10.1016/j.jia.2022.07.011
    Dietary threonine (Thr) deficiency increases hepatic triglyceride content and reduces sebum and abdominal fat percentages in lean type (LT), but not in fatty type (FT) Pekin ducks.  However, the molecular changes regarding the role of Thr in lipid metabolism in LT and FT ducks induced by Thr deficiency remains unknown.  This study compared differential expression gene profiles related to lipid metabolism in FT and LT Pekin ducks affected by Thr deficiency.  We performed transcriptomic profiling and scanned the gene expression in the liver, sebum, and abdominal fat of Pekin ducks fed either Thr-deficient or Thr-adequate diet for 21 days from 14 to 35 days of age.  There were 187, 52, and 50 differentially expressed genes (DEGs) identified in the liver, sebum, and abdominal fat of LT ducks affected by Thr deficiency, of which 12, 9, and 5 genes were involved in lipid metabolism, respectively.  Thr deficiency altered the expression of 27, 6, and 3 genes in FT ducks’ liver, sebum, and abdominal fat, respectively.  None of the DEGs had a relationship with lipid metabolism in FT ducks.  KEGG analysis showed that the DEGs in the LT ducks’ livers were enriched in lipid metabolism pathways (linolenic acid metabolism, glycerophospholipid metabolism, and arachidonic acid metabolism) and amino acid metabolism pathways (biosynthesis of amino acids, phenylalanine metabolism, β-alanine metabolism, and glycine, serine and threonine metabolisms).  The DEGs in the sebum and abdominal fat of LT ducks were not enriched in lipid and amino acid metabolic pathways.  Additionally, DEGs involved in lipid metabolism were found to be upregulated by Thr deficiency in LT ducks, such as malic enzyme 3 (ME3), acyl-CoA synthetase short-chain family member 2 (ACSS2) in liver, and lipase member M (LIPM) in sebum.  In summary, dietary Thr deficiency regulated the gene expression involved in lipid metabolism in the liver, sebum, and abdominal fat of Pekin ducks in a genotype-dependent manner.

  • Animal Science · Veterinary Medicine
    CHU Shuang-feng, ZHAO Tian-qi, Abdelaziz Adam Idriss ARBAB, YANG Yi, CHEN Zhi, YANG Zhang-ping
    Journal of Integrative Agriculture. 2022, 21(10): 3004-3016. https://doi.org/10.1016/j.jia.2022.07.039

    Fat is an indispensable nutrient and basic metabolite for sustaining life, and milk is particularly rich in fatty acids, including a variety of saturated and unsaturated fatty acids.  MicroRNA (miRNA) and mRNA play an important role in the regulation of milk fat metabolism in mammary gland tissue.  It has been shown that lipid metabolism has a complex transcriptional regulation, but the mechanism by which milk fat synthesis is regulated through miRNA–mRNA interactions is poorly understood.  In this study, we performed transcriptome sequencing with bovine mammary gland tissue in the late lactation (270 and 315 days after parturition) to identify the key gene that regulating milk fat metabolism.  A total of 1 207 differentially coexpressed genes were selected, 828 upregulated genes and 379 downregulated genes were identified.  The transforming growth factor alpha (TGFA) gene was selected as the target gene, and luciferase reporter assay, Western blotting and qRT-PCR were used for further study.  The results demonstrated that miR-140 was an upstream regulator of TGFA, and miR-140 could inhibit (P<0.01) unsaturated fatty acid and triglyceride (TAGs) production in bovine mammary epithelial cells (BMECs).  In contrast, TGFA promoted (P<0.01) unsaturated fatty acid and TAG production.  Rescue experiments further indicated the miR-140/TGFA regulatory mechanism.  Taken together, these results suggest that the miR-140/TGFA pathway can inhibit (P<0.01) milk fat metabolism and improve milk quality by genetic means.

  • Horticulture
    HOU Qian-dong, HONG Yi, WEN Zhuang, SHANG Chun-qiong, LI Zheng-chun, CAI Xiao-wei, QIAO Guang, WEN Xiao-peng
    Journal of Integrative Agriculture. 2023, 22(6): 1720-1739. https://doi.org/10.1016/j.jia.2023.04.031

    Small auxin up RNA (SAUR) is a large gene family that is widely distributed among land plants.  In this study, a comprehensive analysis of the SAUR family was performed in sweet cherry, and the potential biological functions of PavSAUR55 were identified using the method of genetic transformation.  The sweet cherry genome encodes 86 SAUR members, the majority of which are intron-less.  These genes appear to be divided into seven subfamilies through evolution.  Gene duplication events indicate that fragment duplication and tandem duplication events occurred in the sweet cherry.  Most of the members mainly underwent purification selection pressure during evolution.  During fruit development, the expression levels of PavSAUR16/45/56/63 were up-regulated, and conversely, those of PavSAUR12/61 were down-regulated.  Due to the significantly differential expressions of PavSAUR13/16/55/61 during the fruitlet abscission process, they might be the candidate genes involved in the regulation of physiological fruit abscission in sweet cherry.  Overexpression of PavSAUR55 in Arabidopsis produced earlier reproductive growth, root elongation, and delayed petal abscission.  In addition, this gene did not cause any change in the germination time of seeds and was able to increase the number of lateral roots under abscisic acid (ABA) treatment.  The identified SAURs of sweet cherry play a crucial role in fruitlet abscission and will facilitate future insights into the mechanism underlying the heavy fruitlet abscission that can occur in this fruit crop.

  • Mingzhuo Li, WenZhao Wang, Yeru Wang, Lili Guo, Yajun Liu, Xiaolan Jiang, Liping Gao, Tao Xia
    Journal of Integrative Agriculture. 2024, 23(06): 0. https://doi.org/10.1016/j.jia.2024.03.060
    In tea plants, the abundant flavonoid compounds are responsible for the health benefits for the human body and define the astringent flavor profile. While the downstream mechanisms of flavonoid biosynthesis have been extensively studied, the role of chalcone synthase (CHS) in this secondary metabolic process within tea plants remains less clear. In our current study, we compared the evolutionary profile of the flavonoid metabolism pathway and discovered that gene duplication of CHS occurred in tea plants. We identified three CsCHS genes, along with a CsCHS-like gene, as potential candidates for further functional investigation. Unlike the CsCHS-like gene, the CsCHS genes effectively restored flavonoid production in Arabidopsis chs-mutants. Additionally, CsCHS transgenic tobacco plants exhibited higher flavonoid compound accumulation compared to their wild-type counterparts. Most notably, our examination of promoter and gene expression levels for the selected CHS genes revealed distinct responses to UV-B stress in tea plants. Our findings suggest that environmental factors such as UV-B exposure could be key drivers behind the gene duplication events in CHS.