
Research on Heavy Metal Sources and Environmental Evaluation of Soil in Yuanmou, Central Yunnan
XUJie, ZHANGYa, LIPingzhao, XULei, CHENGYanxun, WENFangping
Research on Heavy Metal Sources and Environmental Evaluation of Soil in Yuanmou, Central Yunnan
By identifying the distribution characteristics of heavy metal elements in Yuanmou County, we can understand the local heavy metal sources and environmental ratings, objectively grasp the environmental problems existing in the soil in this area, put forward scientific and reasonable suggestions for agricultural development and environmental governance, and improve the level of land management and environmental monitoring in this area. The method of combining traditional geochemistry and soil science was used, and the sampling was carried out according to the relevant standards of 1:250000 land quality geochemical survey. SPSS, Excel, GeolPAS.V4.5, ArcGIS10.8 and other software were used for data modeling, result integration and map production. The results showed that heavy metal elements As, Cd, Cr, Cu, Hg, Ni, Pb and Zn were existed in the surface soil of Yuanmou County, in which Cd was enriched on the surface, and the anisotropy of Cd and Hg was higher than that of other elements. The overall distribution of Cu was balanced, with local characteristics of enrichment and depletion. Cr was highly correlated with Ni and weakly negatively correlated with Pb. There were three main sources of heavy metals: mainly rich in Zn and As, mainly rich in Cr, Ni and Cu, and mainly rich in Hg. In the comprehensive grade assessment of surface soil environment, the risk-free area was 1873 km2, accounting for 92.77%, and the risk-controlled area was 146 km2, accounting for 7.23%. The area was concentrated in Jiangyi Town, Guanyuan Town and Pingtian Town, and scattered in other areas, with no high risk area. The distribution of heavy metals As, Cr, Ni, Pb and Zn in Yuanmou County was mainly controlled by the parent material, Cu and Cd were controlled by the parent material, continuous weathering and human activities, and Hg was mainly controlled by human activities. There was no high-risk area in Environmental rating, and the risk controllable areas were mainly affected by Cu and Cd, among which the Cd risk controllable areas were highly consistent with the concentrated areas of agricultural development, and the application of relevant pesticides should be reasonably controlled and monitored in the later stage. Hg wasn’t at risk in the whole region, but there had been a slight enrichment trend in the surface soil, which required a late warning to avoid pollution.
Yuanmou / heavy metal element / land quality / environmental assessment {{custom_keyword}} /
表1 元素分析方法和检出限统计表 |
序号 | 元素 | 分析方法 | 本次检出限 | 规范检出限 |
---|---|---|---|---|
1 | As | AFS | 0.5 | 1 |
2 | Cd | ICP-MS | 0.03 | 0.03 |
3 | Cr | XRF | 2.5 | 5 |
4 | Cu | ICP-MS | 1 | 1 |
5 | Hg | AFS | 0.0005 | 0.0005 |
6 | Ni | ICP-MS | 2 | 2 |
7 | Pb | XRF | 2 | 2 |
8 | Zn | XRF | 4 | 4 |
9 | pH | ISE | 0.1** | 0.1** |
注:**表示单位为无量纲单位。 |
表2 重金属元素参数特征一览表 |
类别/元素名称 | As | Cd | Cr | Cu | Hg | Ni | Pb | Zn | pH |
---|---|---|---|---|---|---|---|---|---|
样品数 | 488 | 487 | 499 | 483 | 492 | 505 | 488 | 498 | 510 |
平均值 | 7.04 | 0.16 | 78.16 | 27.97 | 0.02 | 28.17 | 22.08 | 62.89 | 6.97 |
中位数 | 6.58 | 0.14 | 78.30 | 27.30 | 0.02 | 28.60 | 21.65 | 61.90 | 7.16 |
标准离差 | 3.04 | 0.07 | 15.41 | 7.54 | 0.01 | 8.21 | 6.26 | 19.24 | 1.04 |
变化系数 | 0.43 | 0.46 | 0.20 | 0.27 | 0.36 | 0.29 | 0.28 | 0.31 | 0.15 |
最大值 | 16.30 | 0.38 | 122.00 | 50.80 | 0.05 | 52.70 | 42.10 | 120.00 | 8.70 |
最小值 | 0.79 | 0.03 | 36.90 | 6.67 | 0.01 | 8.07 | 5.30 | 12.50 | 4.60 |
深层背景值 | 6.92 | 0.08 | 82.96 | 26.69 | 0.02 | 29.61 | 20.70 | 65.12 | 7.16 |
K表/深 | 1.02 | 1.92 | 0.94 | 1.05 | 1.14 | 0.95 | 1.07 | 0.97 | 0.97 |
偏度 | 0.56 | 0.88 | -0.02 | 0.24 | 0.95 | 0.15 | 0.23 | 0.14 | -0.38 |
峰度 | -0.08 | 0.57 | -0.22 | 0.13 | 0.81 | 0.02 | 0.34 | -0.37 | -1.09 |
表3 重金属污染风险筛选值和风险管制值统计表 |
元素 | 农用地土壤污染风险筛选值 | 农用地土壤污染风险管制值 | |||||||
---|---|---|---|---|---|---|---|---|---|
pH≤5.5 | 5.5<pH≤6.5 | 6.5<pH≤7.5 | pH>7.5 | pH≤5.5 | 5.5<pH≤6.5 | 6.5<pH≤7.5 | pH>7.5 | ||
Cd | 0.3 | 0.3 | 0.3 | 0.6 | 1.5 | 2 | 3 | 4 | |
Hg | 1.3 | 1.8 | 2.4 | 3.4 | 2 | 2.5 | 4 | 6 | |
As | 40 | 40 | 30 | 25 | 200 | 150 | 120 | 100 | |
Pb | 80 | 100 | 140 | 240 | 400 | 500 | 700 | 1000 | |
Cr | 250 | 250 | 300 | 350 | 800 | 850 | 1000 | 1300 | |
Cu | 150 | 150 | 200 | 200 | |||||
Ni | 60 | 70 | 100 | 190 | |||||
Zn | 200 | 200 | 250 | 300 |
表4 重金属元素相关性一览表 |
As | Cd | Cr | Cu | Hg | Ni | Pb | Zn | |
---|---|---|---|---|---|---|---|---|
As | 1 | 0.202** | 0.276** | 0.220** | 0.143** | 0.303** | 0.424** | 0.430** |
Cd | 1 | 0.043 | 0.236** | 0.234** | 0.090* | 0.166** | 0.377** | |
Cr | 1 | 0.336** | 0.202** | 0.767** | -0.002 | 0.335** | ||
Cu | 1 | 0.150** | 0.350** | 0.091* | 0.241** | |||
Hg | 1 | 0.276** | 0.246** | 0.272** | ||||
Ni | 1 | 0.017 | 0.345** | |||||
Pb | 1 | 0.602** | ||||||
Zn | 1 |
注:**表示在0.01级别(双尾),相关性显著。*表示在0.05级别(双尾),相关性显著。 |
表5 重金属元素主成分特征值与贡献率 |
成分 | 初始特征值 | ||
---|---|---|---|
总计 | 方差百分比/% | 累积/% | |
1 | 2.912 | 36.402 | 36.402 |
2 | 1.521 | 19.013 | 55.415 |
3 | 0.973 | 12.160 | 67.575 |
4 | 0.863 | 10.787 | 78.362 |
5 | 0.666 | 8.325 | 86.687 |
6 | 0.577 | 7.207 | 93.894 |
7 | 0.261 | 3.264 | 97.157 |
8 | 0.227 | 2.843 | 100.000 |
表6 重金属元素在主成分因子上的载荷 |
元素 | 成分 | |
---|---|---|
1 | 2 | |
As | 0.61 | — |
Cd | 0.55 | — |
Cr | — | 0.90 |
Cu | — | 0.54 |
Hg | — | — |
Ni | — | 0.91 |
Pb | 0.84 | — |
Zn | 0.80 | — |
[1] |
曾昭华, 曾雪萍. 云南省癌死亡率与土壤环境中化学元素的关系[J]. 云南地质, 2003, 22(4):395-402.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[2] |
陈越豪. 基于多源数据的元谋热区番茄遥感识别与产量估测研究[D]. 昆明: 云南师范大学, 2022.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[3] |
孙承兴, 王世杰, 戴福盛, 等. 元谋、牟定地区红土化过程中金的富集机理[J]. 地质地球化学, 2000, 28(2):14-18.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[4] |
范玉周, 陈子万, 范礼刚, 等. 浅析云南省金成矿地球化学背景及异常特征[J]. 云南大学学报(自然科学版), 2017, 39(S2):56-61.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[5] |
程雪梅. 扬子板块西南缘元谋杂岩前寒武纪构造—岩浆事件及其对超大陆演化的响应[D]. 北京: 中国地质大学, 2022.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[6] |
宋冬虎, 王燕, 刘兵, 等. 扬子陆块西缘中元古代晚期元谋花岗岩的时代、成因及构造意义[J]. 沉积与特提斯地质, 2023, 43(3):661-673.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[7] |
陈越豪, 何光熊, 史亮涛, 等. 干热河谷典型区元谋县土地利用变化与动态预测[J]. 科学技术与工程, 2021, 21(20):8366-8375.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[8] |
文白成, 李泳波, 陶金柱, 等. 乡村振兴背景下元谋县冬早蔬菜产业高质量发展的思考[J]. 云南农业科技, 2021, 3(1):22-25.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[9] |
徐杰, 张亚, 王浩宇, 等. 滇中元谋土壤养分元素分布特征及异常分析[J]. 西南农业学报, 2022, 35(5):1151-1158.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[10] |
朱丹, 徐义刚, 罗泰义, 等. 峨眉山玄武岩的输送通道:云南元谋朱布岩体[J]. 矿物学报, 2007, 27(4):273-280.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[11] |
中华人民共和国国土资源部. 土地质量地球化学评价规范:DZ/T 0295-2016: 北京: 地质出版社, 2016.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[12] |
徐磊, 黄加忠, 张亚, 等. 滇中高山丘陵区土壤重金属来源及影响因素-以武定县为例[J]. 中国农学通报, 2022, 38(1):82-92.
以武定县为例,探明土壤重金属的来源及影响因素,以期为高山丘陵区土壤重金属污染防治提供理论依据。笔者分析了武定县重金属含量和空间分布特征,运用多元统计分析方法,结合地质特征综合分析土壤重金属来源和影响因素。结果表明,表层土壤重金属的空间分布特征与深层土壤具一致性。除Cd、Pb、Zn外,表层与深层土壤重金属含量无显著差异。受区内断裂带控制,重金属主要富集在铁铜、铅锌多金属成矿带上。在垂向分布上,Cd受人为因素影响较大,Cr、Ni受自身理化性质的控制,As、Cu、Hg、Pb、Zn可能由地质背景控制。8种重金属均来源于成土母质,Cd、Pb、Zn受矿产开采的影响较大,Cr、Ni主要来源于成土母质,As、Cd、Cu、Hg、Pb、Zn来源于多金属成矿带高背景值成土母质与矿产开采的共同影响。不同土壤类型和土地利用类型中重金属含量不同,土壤重金属含量也与有机碳、铁锰氧化物、粘土矿物、养分元素、pH具有较显著的相关关系。
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[13] |
李湘凌, 周涛发, 殷汉琴, 等. 基于层次聚类法和主成分分析法的铜陵市大气降尘污染元素来源解析研究[J]. 地质论评, 2010, 56(2):283-288.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[14] |
李雨潼. 大冶市典型区土壤重金属来源及影响因素研究[D]. 北京: 中国地质大学, 2020.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[15] |
生态环境部. 土壤环境质量农用地土壤污染风险管控标准:GB15618-2018[S]. 北京: 地质出版社, 2018.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[16] |
张勇, 徐智, 邓亚琴, 等. 有机肥料部分替代化肥条件下新垦红壤团聚体变化特征及其与土壤养分供应的关系[J]. 西南农业学报, 2021, 34(12):2685-2690.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[17] |
余飞, 王锐, 周皎, 等. 典型汞矿区周边耕地土壤重金属来源解析与农作物健康风险评价[J]. 物探与化探, 2024, 48(3):847-857.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[18] |
郑立龙, 张德程, 郝连成, 等. 广东雷州东部土壤重金属分布特征来源分析及健康风险评价[J]. 中国地质, 2024, 36(2):1121-1132.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[19] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[20] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[21] |
周艳, 陈樯, 邓绍坡, 等. 西南某铅锌矿区农田土壤重金属空间主成分分析及生态风险评价[J]. 环境科学, 2018, 39(6):2884-2892.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[22] |
贾亚琪, 刘文政, 秦俊虎, 等. 汞矿区耕地土壤和农作物重金属污染状况及健康风险评价[J]. 环境化学, 2022, 41(2):536-548.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[23] |
张雄, 龚一耘, 周评平, 等. 农业科技支撑巩固拓展脱贫攻坚成果同乡村振兴有效衔接研究—以四川民族地区为例[J]. 西南农业学报, 2024, 37(6):1386-1392.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[24] |
刘力, 张传华, 王钟书, 等. 农用地土壤重金属来源解析与健康风险空间分异特征研究—以重庆市巫山县笃坪乡为例[J]. 西南农业学报, 2024, 34(5):1099-1107.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[25] |
黄成敏, 何酼蓉, 张丹, 等. 金沙江干热河谷典型区(云南省)土壤退化机理研究—土壤水分与土壤退化[J]. 长江流域资源与环境, 2001, 10(6):578-584.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[26] |
李春亮, 吴永强, 王翔, 等. 甘肃省武威地区土地质量地球化学评估[J]. 甘肃地质, 2017, 26(1):40-48.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[27] |
何晓滨, 李庆龙, 段庆钟, 等. 云南省施肥及土壤养分变化分析[J]. 中国土壤与肥料, 2011, 12(3):21-26.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[28] |
熊艳, 窦晓黎, 刘友林, 等. 云南省主要农作物肥料施用现状与发展研究[J]. 土壤通报, 2005, 36(2):194-197.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |