Diversity of Bacterial Community Structure of Toona Sinensis Rhizosphere Soil in Taihe Area

ZHAOMingxia, CHENQian, LIUXiaoli, WEIBing, ZHOUZuoqin, SANGYangli, ZHANGQianqian, QUChangqing

PDF(2157 KB)
PDF(2157 KB)
Chinese Agricultural Science Bulletin ›› 2025, Vol. 41 ›› Issue (2) : 91-97. DOI: 10.11924/j.issn.1000-6850.casb2024-0401

Diversity of Bacterial Community Structure of Toona Sinensis Rhizosphere Soil in Taihe Area

Author information +
History +

Abstract

To investigate the soil bacterial community structure of the Toona sinensis cultivation area in Taihe, soil samples from the rhizosphere of Toona sinensis from Taihe were collected. The 16S rDNA V3-V4 region of soil bacteria was sequenced using high-throughput sequencing technology on the Illumina HiSeq platform, and bioinformatics analysis was performed based on the data. The results showed that a total of 1628 operational taxonomic units (OTUs) were obtained, belonging to 26 phyla, 63 classes, 149 orders, 261 families, 512 genera and 574 species. At the phylum level, the dominant bacteria in the rhizosphere soil of Toona sinensis were Proteobacteria (24.26%), Actinobacteria (22.97%) and Firmicutes (21.50%). COG and KEGG annotation analysis of microbiota gene function showed that rhizosphere soil colonies of Toona sinensis could synthesize natural products, such as terpenoids, type II polyketones, aminoglycosides, β-lactams, steroids, non-ribosomal peptides, etc. These results indicated that the bacteria in the rhizosphere soil of Toona sinensis in Taihe not only had rich diversity but also could produce structure-rich and active natural products. The bacteria in the rhizosphere soil of Toona sinensis had great potential for discovering new active natural compounds. The results of this study are of great significance for the utilization and development of microbial resources in the rhizosphere soil of Toona sinensis.

Key words

Toona sinensis cultivated in Taihe / Illumina HiSeq / rhizosphere soil / bacterial diversity / natural products

Cite this article

Download Citations
ZHAO Mingxia , CHEN Qian , LIU Xiaoli , WEI Bing , ZHOU Zuoqin , SANG Yangli , ZHANG Qianqian , QU Changqing. Diversity of Bacterial Community Structure of Toona Sinensis Rhizosphere Soil in Taihe Area. Chinese Agricultural Science Bulletin. 2025, 41(2): 91-97 https://doi.org/10.11924/j.issn.1000-6850.casb2024-0401

0 引言

微生物能够产生种类丰富、结构多样的次级代谢产物,是天然药物的重要来源,一直受到研究者的广泛关注。植物根际土壤是微生物的重要栖息地,植物、土壤和微生物三者之间相互作用、相互影响共同构成了一个土壤微生态环境,如土壤细菌可以产生多种胞外酶将土壤中动植物残体分解为小分子无机物,再被植物重新利用,或是通过产生蛋白质生物合成抑制剂或调节剂等影响其他土壤微生物代谢[1-2]。同时,植物的凋落物和根系分泌物为土壤微生物提供了营养,植物物种的多样性影响土壤微生物数量、群落结构及活性[3]。植物根际土壤微生物在与植物在长期的进化中相互选择、不断地适应多变而又特殊的环境,其所产的次级代谢产物在结构和性质上得到优化,具有独特性和多样性。
香椿Toona sinensis是楝科香椿属多年生落叶乔木,在中国已有2000多年的栽培历史,是中国特有的集食用、药用于一身的经济植物,种植区域广泛,安徽太和是主要的产地之一[4]。从香椿中分离得到的化合物包括萜烯类、黄酮类、生物碱类、皂苷、苯丙素类及甾体类等物质[5-6],现代药理研究发现香椿提取物及其成分具有抗氧化、抗炎、抗肿瘤、抑菌、降糖等生物活性[4,7-10]。香椿根际土壤由于长期受香椿分泌物质的影响,生长在其周围的微生物的种类、数量以及活性代谢产物可能会有别于其他植物根际和非根际微生物,因此,本实验通过Illumina HiSeq测序平台对太和香椿根际土壤细菌进行宏基因组测序分析,旨在研究太和香椿根际土壤细菌的多样性以及功能菌群,评估太和香椿种植基地土壤微生物新物种、新基因、新活性菌株的发掘潜力,为开发利用香椿根际土壤微生物资源提供理论参考。

1 材料与方法

1.1 试验材料

香椿根际土壤样品采集自安徽省太和县香椿种植园区,取样方法采用5点取样法采集土样,3个重复,去除表面的枯枝、石块、落叶等杂物后采集10~30 cm深度土壤样品,低温运回实验室,将采集到土壤样品混合均匀,超低温保存备用。

1.2 试验方法

1.2.1 土壤样品处理

将土壤中携带的枯枝、石块以及砖块等杂物挑选出来,再对混合后的样品进行自然风干。用研钵将干燥后土壤研细,过四十目筛子,保存于无菌的自封袋中,妥善保存备用。

1.2.2 样品16S rDNA V3-V4区的PCR扩增

将选取的土壤样品送往北京擎科生物科技股份有限公司,利用PowerSoil® DNA Isolation Kit的试剂盒提取土壤总DNA,使用琼脂糖凝胶电泳和Nanodrop微量分光光度计检测所提取DNA的纯度和浓度。以稀释后的基因组DNA为模板,使用引物338F (5’- ACTCCTACGGGAGGCAGCA-3’)和806R (5’-GGACTACHVGGGTWTCTAAT-3’),使用高效和高保真酶进行PCR扩增。

1.2.3 PCR产物的纯化和混样

用1.8%的琼脂糖凝胶对PCR产物进行电泳检测,使用Nanodrop进行精确定量,根据PCR产物浓度按照1:1比例混合,采用OMEGA DNA纯化柱纯化样品。再次用1.8%的琼脂糖凝胶电泳检测PCR产物,使用Monarch DNA 胶回收试剂盒进行回收目的DNA。

1.2.4 高通量测序及生物信息学和数据分析

将构建好的文库经检测合格后使用Illumina HiSeq 2500进行测序。为了保证信息分析的准确性和可靠性,首先使用Trimmomatic v0.33和cutadapt v1.9.1软件,对测序得到的Raw Reads进行过滤、识别并去除引物序列,使用 Flash软件将得到的高质量Reads进行拼接,通过Uchime v4.2软件鉴定并去除嵌合体得到有效数据。使用Usearch软件进行聚类分析,在相似性97%的水平上对序列进行OTU聚类[11-12],以Silva为参考数据库[13](Release128, http://www.arb-silva.de)对特征序列进行分类学分析,并在各水平上统计样品的群落组成。

1.2.5 菌群基因功能分类分析

使用PICRUSt2软件将待预测的特征序列与软件中已有的系统发育树进行物种注释,将物种基因序列与KEGG和COG数据库比对,分析样本中的功能基因组成,通过功能信息检索可获得OTU对应的KEGG和COG家族信息,从而计算各功能类别的表达丰度。

1.2.6 物种相关性网络分析

根据各个物种在各个样品中的丰度以及变化情况,进行斯皮尔曼(Spearman)秩相关分析并筛选相关性大于0.1且P值小于0.05的数据,基于Python绘制物种相关性网络图构建相关性网络。

2 结果与分析

2.1 OTUs数目统计及物种注释分析

香椿根际土壤检测样品中平均获得有效序列70340条(过滤后得到的拼接序列数),所得有效序列长度主要分布在400 bp以上,与16 S rDNA V3-V4区序列长度基本吻合。对获得的有效序列进行OTU聚类分析,可分为1628个OTUs。对各样品进行物种注释,注释结果见下表1
表1 各分类水平的微生物类群数统计
样品
S1 24 60 146 252 494 551
S2 24 60 143 247 488 548
S3 25 60 145 256 498 556
S4 24 59 143 246 480 537
S5 26 61 137 226 432 479
S6 25 61 133 228 438 484
S7 25 61 136 230 428 474
总计 26 63 149 261 512 574

2.2 α多样性分析

Shannon-稀释曲线反映各样本在不同测序数量时的微生物多样性。Shannon index越大则物种种类越多,物种越丰富,表明样品中已涵盖绝大多数的微生物物种信息。由图1检测样品的Shannon-稀释曲线来看,随着测序数量的增加,曲线趋向平坦,表明测序数据量合理。Alpha多样性统计结果显示(表2),所建文库的覆盖率均在99%,说明所建立的文库能真实有效地反应样本环境细菌的多样性;除样本S5外,Simpson指数均在0.9以上,Shannon指数均大于8,说明香椿根际土壤细菌群落呈现多样性。
图1 样本细菌的Shannon-稀释曲线

Full size|PPT slide

表2 样本细菌Aplha多样性统计
样品 分类操作单元(OUT) Ace丰富度(ACE) Chao丰富度(Chao1) 香农指数(Shannon) 覆盖率/%
S1 1540 1577.76 1587.36 8.66 99.76
S2 1460 1528.89 1548.00 8.52 99.66
S3 1535 1582.30 1603.98 8.52 99.74
S4 1448 1510.45 1537.06 8.44 99.65
S5 1297 1372.77 1384.29 4.57 99.73
S6 1311 1336.28 1353.66 8.62 99.87
S7 1292 1333.20 1360.62 8.65 99.82
平均 1412 1463.09 1482.14 8.00 99.75

2.3 样品中群落结构分析

从门的分类水平看(图2A),香椿根际土壤细菌群落中,变形菌门(Proteobacteria)含量最高,占比24.26%,其次是放线菌门(Actinobacteria, 22.97%)和厚壁菌门(Firmicutes, 21.50%)。此外,蓝细菌门(Cyanobacteria, 8.42%)、拟杆菌门(Bacteroidetes, 6.69%)、酸杆菌门(Acidobacteria, 5.97%)、芽单胞菌门(Gemmatimonadetes, 3.17%)、绿弯菌门(Chloroflexi, 2.57%)、疣微菌门(Verrucomicrobia, 1.79%)、ε变形菌门(Epsilonbacteraeota, 0.78%)也有分布。
图2 门和纲水平上细菌类群的组成及相对丰度

Full size|PPT slide

从纲的水平来看(图2B),样品中的细菌群落分布排名前五的是γ-变形菌纲(Gammaproteobacteria, 12.21%)、放线菌纲(Actinobacteria, 11.50%)、芽孢杆菌纲(Bacilli, 10.65%)、梭状芽胞杆菌纲(Clostridia, 10.35%)、α-变形杆菌纲(Alphaproteobacteria, 9.90%),此外,在氧光细菌纲(Oxyphotobacteria, 8.42%)、嗜热油菌纲(Thermoleophilia, 6.78%)、拟杆菌纲(6.67%)、Subgroup_6纲(3.08%)、芽单胞菌纲(Gemmatimonadetes, 2.65%)中也有分布。
从目的分类水平看,香椿根际土壤样品中细菌群落排名前五的是梭菌目(Clostridiales, 10.35%)、乳酸杆菌目(Lactobacillales, 9.85%)、拟杆菌目(Bacteroidales, 5.71%)、肠杆菌目(Enterobacteriales, 5.41%)、鞘脂单胞菌目(Sphingomonadales, 4.16%)。从科的分类水平看,香椿根际土壤样品中细菌在乳酸杆菌科(Lactobacillaceae, 7.99%)、毛螺旋菌科(Lachnospiraceae, 6.43%)、肠杆菌科(Enterobacteriaceae, 5.41)、鞘脂单胞菌科(Sphingomonadaceae, 4.16%)、双歧杆菌科(3.39%)、芽单胞菌科(Gemmatimonadaceae, 2.65%)、瘤胃菌科(Ruminococcaceae, 3.09%)均有分布。
从属的分类水平看(图3),香椿根际土壤样品中细菌在乳杆菌属(Lactobacillus, 7.98%)、双歧杆菌属(Bifidobacterium, 7.98%)、Muribaculaceae属(3.14%)、uncultured_bacterium_c_Subgroup_6 (2.88%)、鞘氨醇单胞菌属(Sphingomonas, 2.81%)、Gaiellales属(2.29%)、毛螺旋菌属(uncultured_bacterium_f_ Lachnospiraceae, 2.81%)、泛菌属(Pantoea, 1.80%)及Gaiella属(1.77%)等都有分布。在属水平进行物种相关性分析,绘制物种相关性网络图(图4),此处展示相关性最高的前50个属。由物种相关性网络图可见,香椿根际土壤微生物彼此相互关联,且主要呈正相关。
图3 属水平上细菌类群的组成及相对丰度

Full size|PPT slide

图4 属水平各物种网络图

圆圈代表物种,圆圈大小代表物种平均丰度大小;线条代表两物种间相关,线的粗细代表相关性的强弱,线的颜色:橙色代表正相关,绿色代表负相关

Full size|PPT slide

2.4 菌群基因功能分类分析

COG (cluster of orthologous groups)注释是基因功能注释的一种方法。对香椿根际土壤细菌基因进行COG功能分类分析,共获得21类功能,常规功能预测占比最大(11.15%),其次是代谢相关的功能,如氨基酸的转运和代谢、糖类的转运和代谢、脂类的转运和代谢、核苷酸的转运和代谢及次级代谢产物代谢,其中,次生代谢产物生物合成和分解代谢功能占比最少(1.59%),其他功能分类见图5。KEGG数据库比对分析发现,注释获得301个KEGG通路,这些代谢通路除了与初级代谢、信号传递、代谢调控及细胞生长相关外,还与次级代谢产物合成相关,次级代谢产物包括萜类、II型聚酮类、氨基糖苷类、β-内酰胺类、类固醇类、非核糖体肽等,表明香椿根际土壤微生物可以产生结构类型丰富的天然产物。
图5 细菌的COG功能分类

Full size|PPT slide

3 结论

Illumina HiSeq测序平台高通量测序结果显示,太和香椿根际土壤细菌具有较高的丰富度,变形菌门、放线菌门和厚壁菌门是优势菌门。菌群基因功能分类分析显示,太和香椿根际土壤微生物基因参与氨基酸代谢、碳水化合物代谢、能量代谢及次级代谢产物的生物合成、转运和分解代谢。KEGG通路分析显示,太和香椿根际土壤微生物能够合成结构丰富的天然产物,如萜类、II型聚酮类、氨基糖苷类、β-内酰胺类、类固醇类、非核糖体肽等,表明太和香椿根际土壤微生物具有发掘新活性化合物的潜力。该研究首次揭示了太和香椿根际土壤微生物的群落结构,评估了香椿根际土壤微生物资源发掘潜力。

4 讨论

研究微生物多样性的方法主要有纯培养和免培养两种方式。纯培养方法是通过配制合适的培养基,将微生物分离纯化出来,从而获得某一样本中微生物的多样性及其分布。但是自然界中的微生物多为实验室难培养或者痕量微生物,传统的通过纯培养方式研究某一环境中的微生物多样性结构是不够全面的。随着高通量测序技术的发展,高通量测序技术已广泛应用到肠道微生物[14-15]、植物内生菌[16-17]、土壤微生物[18-19]、极端环境微生物[20]等各领域微生物多样性,以及细菌群落结构与其所处生境条件的关联等研究中[21-22]。植物根际土壤是微生物的重要栖息地,它是由植物、土壤和微生物共同构成的一个微环境,三者之间相互作用、相互影响,植物根际土壤微生物能够促进植物生长及应对环境胁迫,从而对植物抗逆性发挥积极作用[23]。同时,植物根际是植物与微生物相互作用的场所,植物可通过根系分泌物、植物叶片氮含量以及碳氮比影响根际土壤属性,进而影响微生物多样性和群落结构[24]。鉴于植物和土壤微生物之间相互作用、彼此依赖的关系,植物根际土壤微生物成为研究的热点。本试验采用Illumina HiSeq测序平台对太和香椿种植基地土壤样品进行微生物多样性的研究,首次揭示了太和香椿根际土壤微生物的群落结构。
OTU划分、Shannon-稀释曲线、α多样性分析指数表明分析的合理性,测序能够全面揭示香椿根际土壤细菌物种的丰富度。在门、纲、目、科、属分类水平上分析显示,香椿根际土壤细菌具有较高的丰富度,其中不可培养微生物较多。在门的分类水平上,变形菌门丰度最高,变形菌门内的物种具有多种营养类型,在农业、环保等领域具有重要应用价值,可用于农业氮肥的利用及废水的处理等[25]。其次是放线菌门,放线菌门属于植物根际土壤微生物类群中优势菌,放线菌门能降解纤维素和几丁质,是土壤养分供给的主要来源,在植物根际土壤微生物类群中占有极其重要的地位[26]。此外,放线菌是抗生素及其他生物活性物质的主要来源,目前临床及农业上使用的抗生素中,超过60%是放线菌产生[27]。菌群代谢功能生物信息分析结果表明香椿根际土壤菌群可以产结构类型丰富的活性天然化合物,如蛋白激酶抑制剂星孢菌素,抗结核杆菌的利福霉素,氨基糖苷类化合物链霉素、庆大霉素、新霉素、卡那霉素等,四环素类抗生素,糖肽类抗生素万古霉素,β-内酰胺类青霉素和头孢菌素抗生素,非典型β-内酰胺类碳青霉烯等。综上所述,香椿根际土壤微生物具有广泛的开发研究价值。本实验室从香椿根际土壤中筛选出可培养放线菌109株,对金黄色葡萄球菌或枯草芽孢杆菌有抗性的菌株有35株,对这35株菌产活性物质的初步研究显示,能够产几丁质酶、纤维素酶等,以及富含PKS活性天然产物。
对不同产地的香椿化学成分研究发现,不同产地的香椿化学成分及挥发性风味物质呈现明显的产地差异性[28-29],除气候环境影响了香椿化学成分及风味外,考虑到香椿、土壤微生物之间的相互作用,不同产地香椿的独特风味是否也受到根际土壤微生物的影响有待研究。

References

[1]
SHARMA M. Actinomycetes: Source, identification, and their applications[J]. Int.J.Curr. Microbiol. App. Sci, 2014, 3(2):801-832.
[2]
佘婷, 田野. 森林生态系统凋落物多样性对分解过程和土壤微生物特性影响研究进展[J]. 生态科学, 2020, 39(1):213-223.
[3]
QIN B, ZHOU J, ELSER J J, et al. Water Depth Underpins the Relative Roles and Fates of Nitrogen and Phosphorus in Lakes[J]. Environmental science & technology, 2020, 54(6):3191-3198.
[4]
PENG W, LIU Y, HU M, et al. Toona sinensis: a comprehensive review on its traditional usages, phytochemisty, pharmacology and toxicology[J]. Revista brasileira de farmacognosia: orgao oficial da Sociedade Brasileira de Farmacognosia, 2019, 29(1):111-124.
[5]
周婵媛, 阮婧华, 黄健, 等. 香椿化学成分及生物活性研究进展[J]. 中成药, 2020, 42(5):1279-1291.
[6]
DE LEO M, MILELLA L, BRACA A, et al. Cedrela and Toona genera: a rich source of bioactive limonoids and triterpenoids[J]. Phytochemistry reviews, 2018, 17(4):751-783.
[7]
邢莎莎, 陈超. 香椿化学成分及药理作用研究进展[J]. 安徽农业科学, 2010, 38(17):8978-8979;8981.
[8]
赵天会. 香椿不同部位药理作用研究[J]. 吉林农业科技学院学报, 2018, 27(4):8-9;46;115.
[9]
YANG H, GU Q, GAO T, et al. Flavonols and derivatives of gallic acid from young leaves of Toona sinensis (A. Juss.) Roemer and evaluation of their anti-oxidant capacity by chemical methods[J]. Pharmacognosy magazine, 2014, 10(38):185-190.
Toona sinensis (A. Juss.) Roemer is an endemic species of Toona genus native to Asia. Its crude extract exhibits an effective anti-oxidant capacity against oxidative models, but the intrinsic substances responsible for this capacity in the extract remains unclear and is yet to be studied comprehensively.To investigate the chemical constituents of the young leaves of Toona sinensis and its anti-oxidant capacity.Silica gel column chromatography, preparative high-performance liquid chromatography (HPLC), nuclear magnetic resonance (NMR), and mass spectrometry (MS) were used to isolate and characterize the chemical constituents. Four chemical-induced oxidative models including DPPH free-radical scavenging assay, phenazine methosulphate (PMS) nicotinamide adenine dinucleotide (NADH) PMS-NADH-NBT superoxide anion scavenging assay, FeCl3-K3Fe (CN)6 reducing power assay, and FeCl2-FerroZine metal chelation assay were applied in the present study for evaluating anti-oxidant capacity.Five flavonols and three derivatives of gallic acid, including quercetrin, kaempferol-3-O-α-L-rhamopyranoside, astragalin, quercetin, kaempferol, methyl gallate, ethyl gallate, and 1, 2, 3, 4, 6-penta-O-galloyl-β-D-glucopyranose were isolated from the leaves. Results showed that these compounds exhibited various antioxidant properties, markedly either as the strong scavengers for superoxide and free radicals or as molecules that were reducing or metal chelating in nature.The findings suggested that the 8 compounds in the young leaves of T. sinensis that were isolated in our study were the active compounds responsible for its antioxidant activity. These compounds can be utilized as a potential health supplement, as an available source of natural antioxidants, and as an effective material in pharmaceutical applications.
[10]
ZHANG Y, GUO Y, WANG M, et al. Quercetrin from Toona sinensis leaves induces cell cycle arrest and apoptosis via enhancement of oxidative stress in human colorectal cancer SW620 cells[J]. Oncology reports, 2017, 38(6):3319-3326.
Finding effective strategies against colorectal cancer (CRC) is still an emergent health problem. In the present study, we investigated the anticancer activity of quercetrin from Toona sinensis leaves (QTL) and explored the underlying mechanism in human CRC cell line SW620. The cells were treated with various concentrations of QTL and the cytotoxic effects of QTL were determined using the MTT assay. Apoptosis and cell cycle status were detected by flow cytometry. Reactive oxygen species (ROS) levels and mitochondrial membrane potential (∆Ψm) were assessed using DCF-DA and JC-1 fluorescence spectrophotometry, respectively. Western blot analysis was used to quantify the expression of apoptosis‑related proteins. RT-PCR was applied to determine the mRNA levels of glutathione peroxidase (GPx) and catalase (CAT). QTL exhibited growth inhibitory effects and caused cell cycle arrest in the G2/M phase, which was accompanied by increased expression of p53 and p21 proteins. QTL promoted apoptosis which was consistent with the upregulated expression of Bax, cytochrome c, caspase-9, Apaf-1 and caspase-3. In addition, QTL induced the loss of mitochondrial membrane potential and triggered ROS generation, as revealed by the downregulated mRNA expression and enzymatic activity of GPx and CAT. Furthermore, both N‑acetyl cysteine (NAC) and GSH attenuated the QTL-induced growth inhibition observed in SW620 cells along with the increase of ROS levels. These findings revealed that QTL inhibited the growth of CRC cells and facilitated apoptosis by enhancing oxidative stress. QTL may therefore have potential for use in CRC chemotherapy.
[11]
EDGAR RC. UPARSE: highly accurate OTU sequences from microbial amplicon reads[J]. Nature methods, 2013, 10(10):996-998.
Amplified marker-gene sequences can be used to understand microbial community structure, but they suffer from a high level of sequencing and amplification artifacts. The UPARSE pipeline reports operational taxonomic unit (OTU) sequences with ≤1% incorrect bases in artificial microbial community tests, compared with >3% incorrect bases commonly reported by other methods. The improved accuracy results in far fewer OTUs, consistently closer to the expected number of species in a community.
[12]
BOKULICH NA, SUBRAMANIAN S, FAITH JJ, et al. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing[J]. Nature methods, 2013, 10(1):57-59.
High-throughput sequencing has revolutionized microbial ecology, but read quality remains a considerable barrier to accurate taxonomy assignment and α-diversity assessment for microbial communities. We demonstrate that high-quality read length and abundance are the primary factors differentiating correct from erroneous reads produced by Illumina GAIIx, HiSeq and MiSeq instruments. We present guidelines for user-defined quality-filtering strategies, enabling efficient extraction of high-quality data and facilitating interpretation of Illumina sequencing results.
[13]
QUAST C, PRUESSE E, YILMAZ P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools[J]. Nucleic acids research, 2013, 41(Database issue):D590-596.
[14]
DIAS-NETO E, LI Y, POROYKO V, et al. Characterization of Intestinal Microbiomes of Hirschsprung’s Disease Patients with or without Enterocolitis Using Illumina-MiSeq High-Throughput Sequencing[J]. Plos one, 2016, 11(9):e0162079.
[15]
ZENG Y, ZENG D, NI X, et al. Microbial community compositions in the gastrointestinal tract of Chinese Mongolian sheep using Illumina MiSeq sequencing revealed high microbial diversity[J]. AMB express, 2017, 7(1):75.
Chinese Mongolian sheep are an important ruminant raised for wool and meat production. However, little is known about the microbiota of the gastrointestinal tract (GIT) of Chinese Mongolian sheep. To increase our understanding of the microbial community composition in the GIT of Chinese Mongolian sheep, microbiota of five sheep is investigate for the first time using the Illumina MiSeq platform. High microbial diversity was obtained from the GIT, and the microbiota exhibited a higher biodiversity in the stomach and large intestine than in the small intestine. Firmicutes (44.62%), Bacteroidetes (38.49%), and Proteobacteria (4.11%) were the three most abundant phyla present in the GIT of the sheep. The present study also revealed the core genera of Prevotella, Bacteroides, Ruminococcus, Oscillospira, Treponema, and Desulfovibrio in the GIT. Phylogenetic Investigation of Communities by Reconstruction of Unobserved States indicated that the metabolic pathway related to carbohydrate metabolism was the richest in the sheep GIT. In addition, a series of metabolic pathways related to plant secondary metabolism was most abundant in the stomach and large intestine than in the small intestine. Overall, the present study provides insight into the microbial community composition in GIT of the Chinese Mongolian sheep which is highly diverse and needs to be studied further to exploit the complex interactions with the host.
[16]
PHAM NT, MEIER-DINKEL A, HOLTKEN AM, et al. Endophytic bacterial communities in in vitro shoot cultures derived from embryonic tissue of hybrid walnut (Juglans x intermedia)[J]. Plant cell tiss org, 2017, 130(1):153-165.
[17]
刘珍珍, 谷萌萌, 张臣, 等. 基于高通量测序的三七微生物群落结构特征分析[J]. 中草药, 2020, 51(1):204-209.
[18]
HAO D C, SONG S M, MU J, et al. Unearthing microbial diversity of Taxus rhizosphere via MiSeq high-throughput amplicon sequencing and isolate characterization[J]. Scientific reports-Uk, 2016,6.
[19]
TIN HS, PALANIVELOO K, ANILIK J, et al. Impact of Land-use change on vertical soil bacterial communities in Sabah[J]. Microbial ecology, 2018, 75(2):459-467.
Decline in forest productivity due to forest conversion is defining the Bornean landscape. Responses of bacterial communities due to land-use changes are vital and could define our understanding of ecosystem functions. This study reports the changes in bacterial community structure in organic soil (0-5 cm; O-Horizon) and organic-mineral soil (5-15 cm; A-Horizon) across Maliau Basin Conservation Area old growth forest (MBOG), Fragment E logged forest (FELF) located in Kalabakan Forest Reserve to Benta Wawasan oil palm plantation (BWOP) using two-step PCR amplicon analysis of bacteria DNA on Illumina Miseq next generation sequencing. A total of 30 soil samples yielded 893,752-OTU reads at ≥97% similarity from 5,446,512 good quality sequences. Soil from BWOP plantation showed highest unshared OTUs for organic (49.2%) and organic-mineral (50.9%) soil. MBOG soil showed a drop in unshared OTUs between organic (48.6%) and organic-mineral (33.9%). At phylum level, Proteobacteria dominated MBOG but shifted to Actinobacteria in logged and plantation soil. Present findings also indicated that only FELF exhibited change in bacterial communities along the soil depth, moving from the organic to the organic-mineral layer. Both layers of BWOP plantation soils deviated from other forests' soil in β-diversity analysis. To our knowledge, this is the first report on transitions of bacterial community structures with different soil horizons in the tropical rainforest including Borneo, Sabah. Borneo tropical soils form a large reservoir for soil bacteria and future exploration is needed for fully understanding the diversity structure and their bacterial functional properties.
[20]
WUCHTER C, BANNING E, MINCER TJ, et al. Microbial diversity and methanogenic activity of Antrim Shale formation waters from recently fractured wells[J]. Front microbiol, 2013,4.
[21]
陈奇, 宋协法, 周广军, 等. 鲟鱼循环水养殖系统中生物滤池的水质变化及微生物群落结构响应[J]. 中国海洋大学学报(自然科学版), 2022, 52(11):56-66.
[22]
赵旺, 黄星美, 邓正华, 等. 夏季美济礁潟湖养殖区海水细菌多样性及其与环境因子的相关性[J]. 中国水产科学, 2022, 29(5):720-731.
[23]
KHAJEEYAN R, AMINDEHNAVI, MOHSEN MOVAH HEDIFARAJEE, et al. Physiological and yield responses of Aloe vera plant to biofertilizers under different irrigation regimes[J]. Agricultural water management, 2019,225.
[24]
WILSON G W, HICKMAN K R, WILLIAMSON M M. Invasive warm-season grasses reduce mycorrhizal root colonization and biomass production of native prairie grasses[J]. Mycorrhiza, 2012, 22(5):327-336.
Soil organisms play important roles in regulating ecosystem-level processes and the association of arbuscular mycorrhizal (AM) fungi with a plant species can be a central force shaping plant species' ecology. Understanding how mycorrhizal associations are affected by plant invasions may be a critical aspect of the conservation and restoration of native ecosystems. We examined the competitive ability of old world bluestem, a non-native grass (Caucasian bluestem [Bothriochloa bladhii]), and the influence of B. bladhii competition on AM root colonization of native warm-season prairie grasses (Andropogon gerardii or Schizachyrium scoparium), using a substitutive design greenhouse competition experiment. Competition by the non-native resulted in significantly reduced biomass production and AM colonization of the native grasses. To assess plant-soil feedbacks of B. bladhii and Bothriochloa ischaemum, we conducted a second greenhouse study which examined soil alterations indirectly by assessing biomass production and AM colonization of native warm-season grasses planted into soil collected beneath Bothriochloa spp. This study was conducted using soil from four replicate prairie sites throughout Kansas and Oklahoma, USA. Our results indicate that a major mechanism in plant growth suppression following invasion by Bothriochloa spp. is the alteration in soil microbial communities. Plant growth was tightly correlated with AM root colonization demonstrating that mycorrhizae play an important role in the invasion of these systems by Bothriochloa spp. and indicating that the restoration of native AM fungal communities may be a fundamental consideration for the successful establishment of native grasses into invaded sites.
[25]
CEZAR R M, VEZZANI F M, KASCHUK G, et al. Crop rotation reduces the frequency of anaerobic soil bacteria in Red Latosol of Brazil[J]. Brazilian journal of microbiology: [publication of the Brazilian Society for Microbiology], 2021, 52(4):2169-2177.
[26]
REN H, HUANG B, FERNÁNDEZ-GARCÍA V, et al. Biochar and Rhizobacteria Amendments Improve Several Soil Properties and Bacterial Diversity[J]. Microorganisms, 2020, 8(4).
[27]
BÉRDY J. Thoughts and facts about antibiotics: Where we are now and where we are heading[J]. The journal of antibiotics, 2012, 65(8):441.
[28]
赵丽丽, 程菁菁, 王赵改, 等. 基于GC-MS指纹图谱及化学模式识别分析河南不同产地香椿挥发性成分[J]. 食品科学, 2021, 42(20):173-179.
[29]
王晓敏, 史冠莹, 王赵改, 等. 不同产地香椿抗氧化活性及挥发性成分的差异分析[J]. 现代食品科技, 2020, 36(7):271-281.
Share on Mendeley
PDF(2157 KB)

Accesses

Citation

Detail

Sections
Recommended

/