
Study on Effects of Different Plant Growth Regulators on Yield and Quality of Rice
HUXingchen, ZHANGYaoyuan, DOUZhi, ZHOUJian, GAOHui
Study on Effects of Different Plant Growth Regulators on Yield and Quality of Rice
Plant growth regulators play a crucial role in the growth, development, high yield and high quality of rice. This study aimed to investigate the effects of two growth regulators, Aizengduo and Jinduoshou, on rice yield and quality. The experiment was conducted with two high-yielding and quality rice varieties, ‘Nanjing 5718’ (approved by Jiangsu Province as 20210047, a japonica rice variety) and ‘Huiliangyou 858’ (approved by Anhui Province as 2016023, an indica rice variety). Four treatments were set up, including Aizengduo, Jinduoshou 1, Jinduoshou 2 and a blank control. The study focused on the impact of Aizengduo and Jinduoshou on rice yield and its components, as well as rice quality, to clarify the effects of these regulators on enhancing rice yield and quality. The results showed that applying Aizengduo promoted tillering, spikelet differentiation, and grain filling, significantly increasing the yield of japonica rice. The application of Jinduoshou 1 and Jinduoshou 2 improved the number of effective panicles and spike differentiation and flowering in indica rice, with Jinduoshou 1 having a significant effect on increasing indica rice yield. For ‘Huiliangyou 858’, the head rice rate was highest under the Jinduoshou 1 treatment. Significant differences in head rice rate were observed among the four treatments for ‘Nanjing 5718’. In ‘Huiliangyou 858’, the final viscosity was highest with Aizengduo, and the appearance, palatability, and taste values were highest with Jinduoshou 1. For ‘Nanjing 5718’, the highest final viscosity was observed with Jinduoshou 1, the highest breakdown value with Jinduoshou 2, and the lowest setback value with Jinduoshou 2. Aizengduo treatment resulted in the highest scores for appearance, viscosity, balance, taste value, and the lowest hardness. The amylose content was highest in the blank control for ‘Huiliangyou 858’ and lowest in Jinduoshou 2 for ‘Nanjing 5718’. The study provides theoretical references for innovating high-yield and quality rice cultivation techniques and improving rice production efficiency.
plant growth regulator / indica rice / japonica rice / yield / rice quality {{custom_keyword}} /
表1 爱增多与金多收每公顷用量方案 |
施用时期 | 爱增多处理 | 金多收1处理 | 金多收2处理 |
---|---|---|---|
第一次 (分蘖后期) | 0.15%芸苔素内酯(60 mL)+ 吡唑醚菌酯(300 mL)+ 海藻酸叶面肥(600 mL) | 0.75%芸苔素烯效唑复配 (300 mL)+高磷高钾海藻酸叶面肥(750 mL) | 0.1%噻苯隆(750 mL)+ 0.004%芸苔素内酯(750 mL)+ 高磷高钾海藻酸叶面肥(750 mL) |
第二次 (孕穗后期) | 0.15%芸苔素内酯(60 mL)+吡唑醚菌酯 (300 mL)+海藻酸叶面肥(600 mL)+ 缓释氮肥(1500 mL) | 0.004%芸苔素内酯(300 mL)+ 高磷高钾海藻酸叶面肥(750 mL)+缓释氮肥(750 mL) | 0.1%噻苯隆(600 mL)+0.004%芸苔素内酯(300 mL)+高磷高钾海藻酸叶面肥 (300 mL)+缓释氮肥(750 mL) |
第三次 (灌浆期) | 0.15%芸苔素内酯(60 mL)+ 吡唑醚菌酯(300 mL)+海藻酸叶面肥 (600 mL)+缓释氮肥(3000 mL) | 0.004%芸苔素内酯(300 mL)+ 缓释氮肥(1500 mL) | 0.004%芸苔素内酯(300 mL)+ 缓释氮肥(1500 mL) |
表2 ‘南粳5718’理论产量及其构成因素 |
处理 | 穗数/(万/hm2) | 每穗粒数/粒 | 结实率/% | 千粒重/g | 理论产量/(kg/hm2) |
---|---|---|---|---|---|
爱增多 | 292.5 b | 152.6 a | 93.8 a | 28.9 | 12076.5 a |
金多收1 | 286.5 b | 140.6 a | 93.8 a | 28.9 | 10978.5 a |
金多收2 | 321.0 a | 130.1 a | 93.0 a | 28.9 | 11193.0 a |
空白 | 273.0 b | 140.9 a | 94.4 a | 28.9 | 10546.5 a |
表3 ‘徽两优858’理论产量及其构成因素 |
处理 | 穗数/(万/hm2) | 每穗粒数/粒 | 结实率/% | 千粒重/g | 理论产量/(kg/hm2) |
---|---|---|---|---|---|
爱增多 | 274.5 a | 172.0 ab | 79.7 a | 27.9 | 10501.5 a |
金多收1 | 255.0 a | 191.4 a | 84.5 a | 27.9 | 11433.0 a |
金多收2 | 264.0 a | 166.8 ab | 84.1 a | 27.9 | 10260.0 a |
空白 | 250.5 a | 160.3 b | 83.5 a | 27.9 | 9420.0 a |
表4 不同生长调节剂处理下的稻米加工品质 |
品种 | 处理 | 糙米率 | 精米率 | 整精米率 |
---|---|---|---|---|
南粳5718 | 爱增多 | 83.37 a | 71.97 ab | 69.70 a |
金多收1 | 83.27 a | 72.57 a | 63.97 b | |
金多收2 | 83.13 a | 71.30 ab | 68.17 ab | |
空白 | 83.40 a | 71.90 ab | 67.63 ab | |
徽两优858 | 爱增多 | 81.80 b | 71.17 ab | 60.63 bc |
金多收1 | 81.57 bc | 71.27 ab | 62.63 b | |
金多收2 | 80.90 c | 69.10 c | 59.20 c | |
空白 | 81.10 bc | 70.87 b | 60.73 bc |
表5 不同生长调节剂处理下的稻米外观品质 |
品种 | 处理 | 粒长/mm | 粒宽/mm | 长宽比 | 垩白粒率/% | 垩白度/% |
---|---|---|---|---|---|---|
南粳5718 | 爱增多 | 4.90 c | 2.87 a | 1.71 b | 34.89 a | 13.08 bcd |
金多收1 | 4.88 c | 2.86 a | 1.71 b | 27.50 bcd | 8.53 e | |
金多收2 | 4.87 c | 2.86 a | 1.71 b | 34.08 ab | 11.79 cde | |
空白 | 4.88 c | 2.88 a | 1.70 b | 32.58 abc | 9.99 de | |
徽两优858 | 爱增多 | 6.15 a | 2.14 b | 2.90 a | 25.74 cd | 17.45 a |
金多收1 | 6.09 b | 2.12 b | 2.90 a | 18.67 e | 12.77 bcd | |
金多收2 | 6.09 ab | 2.14 b | 2.87 a | 25.28 de | 16.08 ab | |
空白 | 6.07 b | 2.12 b | 2.89 a | 20.81 de | 14.90 abc |
表6 不同生长调节剂处理下的RVA谱特征值 |
品种 | 处理 | 峰值黏度 PV/cPw | 热浆黏度 TV/cPw | 最终黏度 FV/cP | 崩解值 BDV/cP | 消减值 SBV/cP | 峰值时间 PeT/min | 糊化温度 PaT/℃ |
---|---|---|---|---|---|---|---|---|
南粳5718 | 爱增多 | 3153.5 a | 1974.8 a | 2554.8 b | 1178.7 ab | -598.7 cd | 6.36 abc | 72.65 b |
金多收1 | 3079.5 a | 2111.7 a | 2689.2 ab | 967.8 c | -390.3 b | 6.54 a | 72.77 b | |
金多收2 | 3050.7 a | 1741.8 b | 2352.5 c | 1308.8 a | -698.2 d | 6.16 c | 71.44 c | |
空白 | 3113.7 a | 2034.8 a | 2600.7 ab | 1078.8 bc | -513.0 bc | 6.46 ab | 72.68 b | |
徽两优858 | 爱增多 | 2779.3 b | 1700.0 b | 2752.2 a | 1079.3 bc | -27.2 a | 6.34 abc | 80.73 a |
金多收1 | 2732.0 b | 1639.3 b | 2703.8 ab | 1092.7 bc | -28.2 a | 6.29 bc | 80.47 a | |
金多收2 | 2673.8 b | 1637.5 b | 2695.7 ab | 1036.3 bc | 21.8 a | 6.31 bc | 80.46 a | |
空白 | 2726.7 b | 1579.5 b | 2649.5 ab | 1147.2 abc | -77.2 a | 6.19 c | 80.07 a |
表7 不同生长调节剂处理下的粳稻品种稻米食味值 |
品种 | 处理 | 外观 | 硬度 | 黏度 | 平衡度 | 食味值 |
---|---|---|---|---|---|---|
南粳5718 | 爱增多 | 5.77 a | 6.93 b | 5.97 a | 5.73 a | 64.62 a |
金多收1 | 5.47 b | 7.07 b | 5.58 b | 5.40 b | 62.50 b | |
金多收2 | 5.33 bc | 6.98 b | 5.27 c | 5.27 bc | 61.55 c | |
空白 | 5.10 c | 7.22 a | 5.27 c | 5.07 c | 60.37 d |
表8 不同生长调节剂处理下的籼稻品种稻米食味值 |
品种 | 处理 | 外观 | 口感 | 食味值 |
---|---|---|---|---|
徽两优858 | 爱增多 | 6.83 b | 6.75 b | 70.02 b |
金多收1 | 7.13 a | 7.08 a | 72.23 a | |
金多收2 | 6.78 b | 6.73 b | 69.33 c | |
空白 | 6.88 b | 6.83 b | 70.43 b |
表9 不同生长调节剂处理下的直链淀粉含量 % |
品种 | 处理 | 直链淀粉含量 |
---|---|---|
南粳5718 | 爱增多 | 10.97 a |
金多收1 | 9.36 bc | |
金多收2 | 9.23 bc | |
空白 | 10.85 a | |
徽两优858 | 爱增多 | 14.09 b |
金多收1 | 13.67 bc | |
金多收2 | 12.66 bc | |
空白 | 10.53 c |
[1] |
虞国平, 朱鸿英. 我国水稻生产现状及发展对策研究[J]. 现代农业科技, 2009(6):122-126.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[2] |
李丽楠, 刘震宇, 周明园, 等. 水稻化控技术研究与应用进展[J]. 江苏农业科学, 2020, 48(6):12-16.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[3] |
张洪程, 陆建飞, 戴其根, 等. 全面推进水稻生产绿色发展、高水平建设长江经济带绿色大粮仓[J]. 中国稻米, 2021, 27(4):7-8.
长江经济带是我国最大的水稻主产区。水稻生产不仅维系我国“口粮绝对安全”,而且是维持流域生态平衡、促进人与自然和谐发展的根基。建议国家将推进水稻生产绿色发展、高水平建设“绿色大粮仓”作为实施长江经济带发展战略和国家粮食安全战略的重大工程,建设世界最大的稻田绿色生态系统,巩固提升长江经济带“国家粮仓”战略地位。
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[4] |
Plant architecture, a collection of the important agronomic traits that determine grain production in rice, is mainly affected by factors including tillering, plant height and panicle morphology. Recently, significant progress has been made in isolating and collecting of mutants that are defective in rice plant architecture. Although our understanding of the molecular mechanisms that control rice tillering, panicle development and plant height are still limited, new findings have begun to emerge. This review, therefore, summarizes the recent progress in exploring the mechanisms that control rice plant architecture.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[5] |
杨惠杰, 杨仁崔, 李义珍, 等. 水稻超高产品种的产量潜力及产量构成因素分析[J]. 福建农业学报, 2000(3):1-8.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[6] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[7] |
杜彦修, 路桥连, 张静, 等. 外源激素对水稻籽粒充实度和品质的影响[J]. 河南农业科学, 2010(12):22-25.
激素在植物生长发育过程中起着重要作用,为了探究外源激素对水稻籽粒充实和品质的影响,在大田条件下,于开花前5 d喷施3种外源激素ABA、GA3、PR1(复配的化学调控剂),结果表明,喷施ABA的水稻强势粒千粒重比对照(喷清水)高5.69%,弱势粒千粒重比对照高12.00%;喷施GA3的水稻强势粒千粒重比对照高4.67%,弱势粒千粒重比对照高7.67%;喷施PR1的水稻强势粒千粒重比对照高8.27%,弱势粒千粒重比对照高13.89%.喷施ABA、GA3 和PR1的水稻强势粒的充实度与对照相比,分别提高了1.72%、1.12%、1.20%,弱势粒充实度分别提高了9.71%、5.49%、12.86%.喷施ABA和PR1降低了垩白粒率、垩白面积和垩白度,强、弱势粒的垩白粒率与对照比差异均达极显著水平.研究表明,3种外源激素处理都提高了水稻的强、弱势粒千粒重和充实度,ABA和PR1处理降低了垩白粒率、垩白面积和垩白度.3种外源激素对水稻弱势粒作用强于对强势粒的作用效果;3种外源激素中,复配的PR1作用效果优于ABA和GA3.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[8] |
孙淑琴, 杨秀荣, 李月娇, 等. 植物生长调节剂在水稻上的应用现状及前景[J]. 天津农业科学, 2022, 28(S1):76-79.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[9] |
张义, 刘云利, 刘子森, 等. 植物生长调节剂的研究及应用进展[J]. 水生生物学报, 2021, 45(3):700-708.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[10] |
王健生, 周瑞雯, 袁登荣. 植物生长调节剂在水稻生产上的应用简述[J]. 中国农技推广, 2022, 38(6):92-95.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[11] |
于广星, 王之旭, 侯守贵, 等. 化控技术在水稻上应用研究进展[J]. 耕作与栽培, 2006(6):41-43.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[12] |
解振兴, 张居念, 姜照伟. 化学调控技术在水稻栽培中的研究进展[J]. 福建稻麦科技, 2016, 34(4):68-73.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[13] |
郑乐娅, 吴文革, 阎川, 等. 植物生长调节剂对水稻光合速率和产量构成因素的影响[J]. 作物杂志, 2011(3):63-66.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[14] |
胡振阳, 程宏, 卢臣, 等. 施氮量和植物生长调节剂对优质稻抗倒能力及产量的调控效应[J]. 江苏农业科学, 2021, 49(6):52-60.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[15] |
褚世海, 李林, 朱文达. 0.01%芸苔素内酯水剂对水稻生长、产量和品质的影响[J]. 湖北农业科学, 2016, 55(24):6445-6448.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[16] |
殷敏, 丁颖, 庄东英, 等. 不同植物生长调节剂复配对水稻产量性状的影响[J]. 现代农业科技, 2023(5):5-8.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[17] |
吴冬云. 植物生长调节剂对水稻品质的影响及其机制[D]. 广州: 华南师范大学, 2003.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[18] |
卢碧林, 王维金. 新型植物生长调节物质对水稻产量及品质的影响研究[J]. 作物杂志, 2005(5):30-32.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[19] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[20] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[21] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[22] |
田铮, 赵春芳, 张亚东, 等. 江苏省半糯型粳稻蒸煮食味品质性状的差异分析[J]. 中国水稻科学, 2021, 35(3):249-258.
【目的】近两年江苏省选育了大量的半糯型粳稻品种。不同半糯型粳稻品种间的食味品质及稻米理化特性仍存在较大差异。探究影响半糯粳稻食味品质形成的原因,将为优良食味水稻育种提供理论依据。【方法】以2019年参加江苏省优良食味稻米评比的39个半糯型粳稻品种为试验材料,通过对蒸煮食味、外观、理化、RVA谱特征值等24个品质相关指标的测定,分析不同食味值组别间各性状指标的差异及与食味品质之间相关性。【结果】依据食味值高低将其分为高食味值(>80)、中食味值(70~80)和低食味值(<70)三组。与低食味值组相比,高食味值组品种具有较低的垩白粒率、垩白度、蛋白质含量和米饭硬度,较好的透明度,较高的胶稠度、米饭外观和黏度值。统计分析表明,直链淀粉含量、成糊温度、RVA谱特征值在三组间差异均不显著。相关性分析表明,米饭食味值与直链淀粉含量、胶稠度呈显著正相关,与蛋白质含量、成糊温度、透明度及垩白性状显著负相关。进一步分析表明高食味值组中各性状与食味值相关性均未达到显著水平,而中、低食味值组中直链淀粉含量与食味值均呈显著正相关。【结论】稻米外观和理化品质对半糯型粳稻食味品质的形成有重要影响,在半糯型粳稻中食味值较高的品种往往具有更好的外观品质、较高的直链淀粉含量和胶稠度、较低的蛋白质含量,因此在半糯型水稻育种过程中应重视这些指标的辅助选择。
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[23] |
贺浩华, 彭小松, 刘宜柏. 环境条件对稻米品质的影响[J]. 江西农业学报, 1997(4):67-73.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[24] |
盛文涛, 周丽洁, 吴俊. 不同类型水稻品种Wx基因多态性位点的鉴定及其与直链淀粉含量的关系[J]. 杂交水稻, 2015, 30(5):74-78,91.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[25] |
邹茜, 邵源梅, 黄平, 等. 不同生态型低AC稻米蒸煮和食味品质特性研究[J]. 西南农业学报, 2019, 32(11):2514-2520.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[26] |
李晓伟, 王恩广, 王杨, 等. 生长调节剂对水稻蒸煮食味品质的影响[J]. 吉林农业, 2010(12):314-315.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
Collection(s)
/
〈 |
|
〉 |