
Impacts of Cultivation Methods on Growth of Canna glauca
GAODi, LIUXianbin, ZHOUJueding, PENGXinxin, LIUQiaogang
Impacts of Cultivation Methods on Growth of Canna glauca
The paper aims to explore the possibility of maximizing various functions of Canna glauca by different cultivation methods. This study took C. glauca as the research object and simulated a growth environment similar to in situ as the control, established seven different cultivation methods including control, soil+ nutrient solution, soil+ water, substrate+ nutrient solution, substrate+ water, nutrient solution, and water. Seedlings were prepared by seed germination method, and were cultivated and managed artificially for 6 months. Plant vegetative growth (plant height, root length, tiller number, and leaf number of the highest tiller), reproductive growth (inflorescence number, ornamental period of inflorescence, numbers of mature capsule and seed), and the accumulation and allocation patterns of primary production among different plant organs (total plant production, aboveground production, underground production, production of reproductive organs) were investigated. The investigated data showed that all the data mentioned above reached their maximum or highest value with the cultivation method of nutrient solution, respectively reached their secondary maximum or highest value with the cultivation method of substrate + nutrient solution, and all respectively decreased to their minimum or lowest value with the cultivation method of water, in which the growth of C. glauca was the weakest and even the phenomenon of necrosis of growth points at the stem tip occurred in the later experimental stage. The results of data analyses showed that all the investigated data mentioned above increased and reached the significant level with the cultivation method of nutrient solution and decreased and reached the statistically significant level with the cultivation method of water than those in control. This study demonstrates that the cultivation method of nutrient solution not only satisfies the hydroponic nature of C. glauca, but also provides all the sufficient and balanced nutrient elements, which is most suitable for the growth of C. glauca. It is the preferred cultivation method for C. glauca as fresh cut flowers and potted flowers in the future.
Canna glauca / Hoagland standard nutrient solution / mixed substrates / vegetative growth / reproductive growth / biomass allocation / emergent plant / water purification {{custom_keyword}} /
表1 7种栽培方式 |
序号 | 栽培方式 | 实验处理 |
---|---|---|
1 | 对照 | 以学校本部校园山顶悠悠湖浅水区美人蕉植株集中分布且长势良好区域湖底0~20 cm淤泥为栽培介质,日常管理浇灌雨水。栽培盆内淤泥深度20 cm。栽培过程中保证植株根部一直处于浸水状态,浸水深度10 cm,尽量接近其在悠悠湖浅水区自然生长的状态 |
2 | 土壤+营养液 | 以学校本部校园山顶玉溪市城中心植物园原始森林分布中心区域50 cm以下深处原生土为栽培介质,pH 5.3~5.8,土壤有机质含量18.22~24.25 g/kg,土壤微生物量碳含量0.11~0.13 g/kg,土壤微生物量氮含量0.02~0.3 g/kg,土壤全氮含量0.08%~0.09%,土壤全磷含量0.01%~0.02%。栽培盆内土壤深度20 cm,与对照保持一致。利用改良版标准Hoagland营养液浇灌植株,前2个月每4周浇灌1次营养液,中间2个月每2周浇灌1次营养液,后期每周浇灌1次营养液,其余时间视栽培盆内液面减少情况及时浇灌雨水。保证植株根部一直处于浸水状态,浸水深度10 cm,尽量与对照植株栽培条件保持一致 |
3 | 土壤+水 | 以学校本部校园山顶玉溪市城中心植物园原始森林分布中心区域50 cm以下深处原生土为栽培介质,pH 5.3~5.8,土壤有机质含量18.22~24.25 g/kg,土壤微生物量碳含量0.11~0.13 g/kg,土壤微生物量氮含量0.02~0.3 g/kg,土壤全氮含量0.08%~0.09%,土壤全磷含量0.01%~0.02%。栽培盆内土壤深度20 cm,与对照保持一致。日常管理浇灌雨水,保证植株根部一直处于浸水状态,浸水深度10 cm,尽量与对照植株栽培条件保持一致 |
4 | 基质+营养液 | 采用混合基质,蛭石、草炭和有机土等体积混合。栽培盆内基质深度20 cm,与对照淤泥深度保持一致。利用改良版标准Hoagland营养液浇灌植株,前2个月每4周浇灌1次营养液,中间2个月每2周浇灌1次营养液,后期每周浇灌1次营养液,其余时间视栽培盆内液面减少情况及时浇灌雨水。保证植株根部一直处于浸水状态,浸水深度10 cm,尽量与对照植株栽培条件保持一致 |
5 | 基质+水 | 采用混合基质,蛭石、草炭和有机土等体积混合。栽培盆内基质深度20 cm,与对照淤泥深度保持一致。日常管理浇灌雨水,保证植株根部一直处于浸水状态,浸水深度10 cm,尽量与对照植株栽培条件保持一致 |
6 | 营养液 | 采用定植板和定植杯配合营养液栽培的方式,利用改良版标准Hoagland营养液,栽培盆内营养液深度30 cm,与对照液面高度保持一致。定植板下方和营养液液面中间间隔5 cm,保证空气中尽量多氧气通过营养液液面进入营养液中供植物根系呼吸利用。前2个月每4周更换1次营养液,中间2个月每2周更换1次营养液,后期每周更换1次营养液,其余时间视栽培盆内营养液液面降低情况及时补充雨水 |
7 | 水 | 采用定植板和定植杯配合雨水栽培的方式,栽培盆内雨水深度30 cm,与对照液面高度保持一致。定植板下方和雨水液面中间间隔5 cm,保证空气中尽量多氧气通过雨水液面进入雨水中供植物根系呼吸利用。前2个月每4周更换1次雨水,中间2个月每2周更换1次雨水,后期每周更换1次雨水,其余时间视栽培盆内雨水液面的降低情况及时补充雨水 |
表2 美人蕉植株营养器官和繁殖器官的生物量分配比例 % |
项目 | 对照 | 土壤+营养液 | 土壤+水 | 基质+营养液 | 基质+水 | 营养液 | 水 |
---|---|---|---|---|---|---|---|
茎叶生物量/总生物量 | 51.94±2.16b | 50.03±4.27b | 35.01±2.56d | 49.51±1.64b | 35.68±4.17d | 42.09±1.65c | 56.35±2.01a |
繁殖器官生物量/总生物量 | 13.09±0.24c | 15.73±0.75b | 12.25±1.52d | 12.85±0.74d | 9.59±0.71e | 17.65±0.13a | 11.24±1.13d |
地上部生物量/总生物量 | 65.04±1.91a | 65.77±2.03a | 47.26±3.08c | 62.36±2.38ab | 45.27±3.46c | 59.74±1.68b | 67.60±1.13a |
地下部根系生物量/总生物量 | 34.96±1.71c | 33.81±1.96c | 52.54±1.39a | 37.66±1.79b | 56.04±4.02a | 40.32±1.06b | 33.59±1.93c |
营养器官生物量/总生物量 | 86.91±0.24ab | 84.27±0.75b | 87.75±1.52a | 87.15±0.74a | 90.41±0.71a | 82.35±0.13c | 88.76±1.13a |
注:同行不同小写字母表示数据统计学差异达0.05显著水平。 |
表3 6种不同栽培方式对美人蕉植株影响的显著性比较(P值) |
项目 | 土壤+营养液 | 土壤+水 | 基质+营养液 | 基质+水 | 营养液 | 水 | |
---|---|---|---|---|---|---|---|
营养器官 | 株高 | 0.085 | 0.002 | 0.006 | 0.091 | 0.001 | <0.000 |
根长 | 0.103 | 0.006 | 0.050 | 0.011 | 0.004 | <0.000 | |
分蘖数 | 0.357 | 0.391 | 0.023 | 0.656 | 0.002 | 0.019 | |
最高分蘖叶片数 | 0.573 | 0.288 | 0.288 | 0.288 | 0.045 | 0.003 | |
繁殖器官 | 花序数 | 0.656 | 0.044 | 0.391 | 0.046 | 0.015 | 0.019 |
花序观赏期 | 0.989 | 0.046 | 0.423 | 0.300 | 0.044 | 0.032 | |
成熟蒴果数 | 0.617 | 0.002 | 0.024 | 0.009 | 0.004 | <0.000 | |
成熟种子数 | 0.222 | 0.001 | 0.041 | 0.043 | 0.002 | <0.000 | |
生物量 | 总生物量 | 0.049 | <0.000 | 0.038 | 0.001 | 0.001 | <0.000 |
地上部生物量 | 0.147 | <0.000 | 0.047 | <0.000 | 0.001 | <0.000 | |
地下部生物量 | 0.043 | 0.001 | 0.022 | 0.002 | 0.001 | <0.000 | |
繁殖器官生物量 | 0.715 | 0.001 | 0.047 | 0.001 | <0.000 | <0.000 |
[1] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[2] |
黄永艺, 包晓鹏, 李成璋, 等. 美人蕉栽培种病虫害综合防治技术[J]. 山东林业科技, 2016, 6:88-91.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[3] |
黄国涛. 美人蕉属(Canna)植物引种与品种分类研究[D]. 南京: 南京林业大学, 2005:8-20.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[4] |
黄国涛, 欧阳底梅, 向其柏, 等. 美人蕉属品种分类研究[J]. 南京林业大学学报(自然科学版), 2005, 4:20-24.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[5] |
任国桢, 谢亚红, 崔绪玲. 芍药、美人蕉的引种、品种收集及栽培研究专题报告[J]. 园林科技, 2001, S1:30-44.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[6] |
黄国涛, 欧阳底梅, 向其柏, 等. 美人蕉种质资源的RAPD分析[J]. 园艺学报, 2005, 2:273-277.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[7] |
孙映波, 梅瑜. 不同水生植物配置对河涌污水的净化效果[J]. 生态环境学报, 2011, 20(6):1123-1126.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[8] |
何琦, 曹凤梅, 卢少勇, 等. 挺水植物生物炭对硫丹的吸附及催化水解作用[J]. 中国环境科学, 2018, 3:1126-1132.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[9] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[10] |
黄国涛, 向其柏, 欧阳底梅, 等. 优美的水生花卉——水生美人蕉[J]. 林业实用技术, 2004, 12:36-37.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[11] |
张阿龙, 高瑞忠, 张生. 吉兰泰盐湖盆地土壤铬、汞、砷污染的负荷特征与健康风险评价[J]. 干旱区研究, 2018, 35(5):1057-1067.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[12] |
尹继清, 范弢. 滇东南峰林湖盆区土壤理化性质的空间异质性分析[J]. 中国农业科技导报, 2017, 9:117-127.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[13] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[14] |
任岩, 张远兵. 腐熟秸秆栽培美人蕉的基质筛选[J]. 安徽科技学院学报, 2017, 6:45-51.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[15] |
陈兆贵, 黄雁婷. 不同基质与生长调节剂对大花美人蕉的影响[J]. 广东园林, 2010, 2:61-63.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[16] |
牛小磊, 杨夏欣, 王志远, 等. 美人蕉对西安护城河水体净化功能的初步研究[J]. 环境保护科学, 2007, 6:44-46.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[17] |
吴诗杰, 陈慧娟, 许小桃, 等. 美人蕉、鸢尾、黄菖蒲和千屈菜对富营养化水体净化效果研究[J]. 安徽大学学报(自然科学版), 2016, 1:98-108.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[18] |
李琴, 李海翔, 董堃, 等. 4种湿地植物混合群落净化污染水体的试验[J]. 净水技术, 2022, 41(1):108-114.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[19] |
肖月娥. 不同栽培方式对美人蕉生长发育及生理特性的影响[J]. 植物学研究, 2014, 3(4):146-154.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[20] |
黄永芳, 杨秋艳, 张太平, 等. 水培条件下两种植物根系分泌特征及其与污染物去除的关系[J]. 生态学杂志, 2014, 2:373-379.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[21] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[22] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[23] |
罗盼, 周兰英, 高宏梅, 等. 不同营养液水培对蟹爪兰的生长影响[J]. 北方园艺, 2011, 16:86-88.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[24] |
In this study, the removal of nitrogen and phosphorus from the effluent of treated swine wastewater by Eichhornia crassipes, Pistia stratiotes, Limnobium laevigatum, and Lemna sp. was investigated. This study also aimed to quantify the potential biomass production and lignocellulosic composition of the floating plants cultured in the effluent. Plants were grown in treated swine wastewater effluent or Hoagland's solution. Pistia stratiotes showed the highest total nitrogen removal of 63.15% from the treated effluent. Lemna sp. showed the highest phosphorus removal of 36.15% from the treated effluent. However, Lemna sp. could not be further utilized because the plants could only be cultured for 13 days. The effluent likely had properties that inhibited the growth and nutrient uptake by the plants; further studies would be required to verify these properties. Pistia stratiotes and Eichhornia crassipes have higher tolerance than Lemna sp. to grow in treated swine wastewater. Eichhornia crassipes produced the highest biomass of 5.19 g dry weight/m/day. Cellulose and lignin contents were higher in the Hoagland's solution treatment when compared with the effluent. However, based on an independent T-test analysis, the cellulose contents of plants grown in different media were not significantly different. Hemicellulose content was significantly different for Pistia stratiotes (p < 0.05). Finally, lignin content was significantly different for Eichhornia crassipes and Lemna sp (p < 0.05). The nutrient composition and available plant nutrients as well as other substances present in the effluent might have influenced the plant cell wall composition.Copyright © 2018 Elsevier Ltd. All rights reserved.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[25] |
周玦玎, 刘宪斌, 高娣, 等. 供钙量对皂质芦荟植株营养生长和生殖生长的影响[J]. 中国农学通报, 2023, 39(25):33-41.
研究不同浓度供钙量对芦荟植株营养生长和生殖生长的影响,探讨增加芦荟人工栽培品种用以满足原材料市场需求的可能性。以皂质芦荟为研究对象,采用混合基质+营养液的种植方式,在改良霍格兰营养液配方的基础上设置13个不同浓度钙矿质养分处理,人工栽培皂质芦荟植株4个月,测定植株外部形态、植物生长量和繁殖器官等指标生长数据。试验结果表明,除根长、叶片数量、分蘖数量和花梗数量4项指标外,株高、叶片厚度、最大叶片面积、总生物量、地上部生物量、地下部生物量、繁殖器官生物量、花梗高度、蒴果数量和种子数量等10项数据均在110%钙浓度处理中达到最大值;次最大值出现在100%和120% 2个处理中;在0%和500% 2个处理中上述所有测定数据指标均最小。生物量数据显示,地上部器官生物量所占比重最大,繁殖器官次之,地下器官生物量最小。研究证明,皂质芦荟属于适钙植物,11 mmol/L Ca<sup>2+</sup>浓度霍格兰营养液配方最适合其植株生长发育。
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[26] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[27] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[28] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[29] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[30] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[31] |
李丽辉, 汤沛, 杨天仪. 云南省滇池—抚仙湖地区土壤地球化学背景及元素分布特征[J]. 云南大学学报(自然科学版), 2017(S2):357-370.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[32] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[33] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[34] |
方源, 谢培, 谭林, 等. 生境对挺水植物生长的影响及其反馈作用机制综述[J]. 生态学杂志, 2021, 40(8):2610-2619.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[35] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[36] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[37] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[38] |
涂枫卿, 崔一楠. 三线建设与云南城镇发展[J]. 学术探索, 2019, 12:120-128.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |