Development Status and Trends of Ventilation Technology and Equipment of Different Facility Types

SUNYuanchao, WANGHui, LIUTianxiang, GUOWenzhong, SUNWeituo, CUIJinxia

PDF(1174 KB)
PDF(1174 KB)
Chinese Agricultural Science Bulletin ›› 2024, Vol. 40 ›› Issue (26) : 159-164. DOI: 10.11924/j.issn.1000-6850.casb2023-0887

Development Status and Trends of Ventilation Technology and Equipment of Different Facility Types

Author information +
History +

Abstract

In recent years, facility agriculture in China has developed rapidly as one of the important forms of agricultural modernization. In facility agriculture, facility ventilation is a key means of regulating the facility environment, which is used to regulate environmental factors such as temperature, relative humidity, and wind speed inside the facility. It directly affects the growth, development, yield, and quality of crops inside the facility. This study provides an overview of the current development status of facility ventilation control technology and equipment, analyzes the problems and shortcomings in technical equipment and intelligent systems, and explores future development trends.

Key words

facility horticulture / ventilation method / ventilation equipment / development status / trend

Cite this article

Download Citations
SUN Yuanchao , WANG Hui , LIU Tianxiang , GUO Wenzhong , SUN Weituo , CUI Jinxia. Development Status and Trends of Ventilation Technology and Equipment of Different Facility Types. Chinese Agricultural Science Bulletin. 2024, 40(26): 159-164 https://doi.org/10.11924/j.issn.1000-6850.casb2023-0887

References

[1]
孙锦, 高洪波, 田婧, 等. 我国设施园艺发展现状与趋势[J]. 南京农业大学学报, 2019, 42(4):594-604.
[2]
李天来, 齐明芳, 孟思达. 中国设施园艺发展60年成就与展望[J]. 园艺学报, 2022, 49(10):2119-2130.
简要回顾了中国设施园艺60年的发展历程;简略叙述了60年来中国设施园艺在产业发展、科技创新、人才培养和团队平台建设等方面所取得的成就;展望了未来中国设施园艺的发展潜力和主要任务。
[3]
喻景权, 周杰. “十二五”我国设施蔬菜生产和科技进展及其展望[J]. 中国蔬菜, 2016(9):18-30.
[4]
束胜, 康云艳, 王玉, 等. 世界设施园艺发展概况、特点及趋势分析[J]. 中国蔬菜, 2018(7):1-13.
[5]
姜永. 日光温室科学通风管理措施[J]. 吉林蔬菜, 2013(6):24-25.
[6]
张璐瑶, 黄翔. 降温技术在农业温室中的应用探讨[J]. 农业研究与应用, 2013(5):37-41.
[7]
DANNEHL D, SUHL J, HUYSKENS KEIL S, et al. Effects of a special solar collector greenhouse on water balance, fruit quantity and fruit quality of tomatoes[J]. Agricultural water management, 2014, 134:14-23.
[8]
张大龙, 张中典, 李建明. 环境因子对温室甜瓜蒸腾的驱动和调控效应研究[J]. 农业机械学报, 2015, 46(11):8.
[9]
侯召龙. 温室大棚内多因素综合控释CO2气肥系统的研究[D]. 大庆: 黑龙江八一农垦大学, 2015:55-56.
[10]
严露露, 荆海薇, 鲍恩财, 等. 不同自然通风方式对日光温室性能的影响[J]. 中国农业大学学报, 2020, 25(3):8.
[11]
邹志荣, 邵孝侯. 设施农业环境工程学[M]. 北京: 中国农业出版社, 2008:157-160.
[12]
BOT G P A. Greenhouse climate: From physical processes to a dynamic model[J]. Proefschrift wageningen, 1983.
[13]
BOULARD T, MENESES J F, MERMIER M, et al. The mechanisms involved in the natural ventilation of greenhouses[J]. Agricultural and forest meteorology, 1996, 79(1):61-77.
[14]
方慧, 杨其长, 张义, 等. 日光温室热压风压耦合自然通风流量的模拟[J]. 中国农业气象, 2016, 37(5):531-537.
[15]
程秀花, 毛罕平, 倪军. 风速对温室内气流分布影响的CFD模拟及预测[J]. 农机化研究, 2010, 32(12):15-18.
[16]
杨振超. 日光温室内最佳风速指标与CFD模拟[D]. 杨凌: 西北农林科技大学, 2006:84-86.
[17]
周长吉. 周博士考察拾零(十二)日光温室自然通风原理与通风口的设置[J]. 农业工程技术(温室园艺), 2012(2):38,40.
[18]
周长吉. 周博士考察拾零(四十五)一种活动保温被覆盖透光后屋面的日光温室[J]. 农业工程技术(温室园艺), 2015(16):24-26.
[19]
周长吉. 周博士考察拾零(六十九)中以温室技术的结晶——艾森贝克对中国日光温室的改良与创新[J]. 农业工程技术, 2017, 37(16):44-50.
[20]
程秀花, 毛罕平, 伍德林. 温室自然通风研究进展[J]. 安徽农业科学, 2009, 37(8):3803-3805,3856.
[21]
何科奭, 陈大跃, 孙丽娟, 等. 不同风况和开窗配置对夏季单栋塑料温室微气候的影响[J]. 农业机械学报, 2017, 48(12):311-318,339.
[22]
WEI B, GUO S, WANG J, et al. Thermal performance of single span greenhouses with removable back walls[J]. Biosystems engineering, 2016, 141:48-57.
[23]
陈玉南, 严杏玲. 温室降温(湿帘-风机)系统[J]. 粮油加工与食品机械, 1998(1):27,32.
[24]
王铁良, 李天来, 白义奎, 等. 湿帘降温系统在东北型节能日光温室中的降温效果[J]. 沈阳农业大学学报, 2007(6):837-840.
[25]
童莉, 张政, 陈忠购, 等. 机械通风条件下连栋温室速度场和温度场的CFD数值模拟[J]. 中国农业大学学报, 2003(6):33-37.
[26]
XU J, LI Y, WANG R Z, et al. Experimental performance of evaporative cooling pad systems in greenhouses in humid subtropical climates[J]. Applied energy, 2014, 138:291-301.
[27]
LÓPEZ A, VALERA D L, MOLINA AIZ F D, et al. Sonic anemometry to evaluate airflow characteristics and temperature distribution in empty Mediterranean greenhouses equipped with pad-fan and fog systems[J]. Biosystems engineering, 2012, 113(4):334-350.
[28]
KITTAS C, BARTZANAS T, JAFFRIN A. Temperature gradients in a partially shaded large greenhouse equipped with evaporative cooling Pads[J]. Biosystems engineering. 2003, 85(1):87-94.
[29]
刘佳, 崔涛, 王朝栋, 等. 连栋温室夏季降温技术研究[J]. 农机化研究, 2018, 40(2):7.
[30]
STANGHELLINI C, OOSTER B, HEUVELINK E. Greenhouse horticulture: Technology for optimal crop production[M]. Wageningen: Wageningen Academic publishers, 2019.
[31]
周增产, 赵静, 李秀刚, 等. 半封闭温室夏季降温试验[J]. 农业工程, 2018, 8(2):46-49.
[32]
丁小涛, 周强, 何立中, 等. 半封闭温室迷你黄瓜岩棉栽培技术[J]. 中国蔬菜, 2016(6):5.
[33]
刘云骥. 日光温室正压式湿帘风机降温系统的研制与应用效果研究[D]. 沈阳: 沈阳农业大学, 2018:35-37.
[34]
刘云骥, 徐继彤, 庞松若, 等. 日光温室正压式湿帘风机系统设计及其降温效果[J]. 中国农业大学学报, 2019, 24(5):130-139.
[35]
孙维拓, 周波, 徐凡, 等. 日光温室正压湿帘冷风降温性能及冷负荷计算模型[J]. 农业工程学报, 2019, 35(16):11.
[36]
黄全丰. 温室机械通风CFD模拟与优化控制研究[D]. 赣州: 江西理工大学, 2015:50-51.
[37]
曹健, 宋钊, 刘联琦, 等. 夏季蔬菜温室降温设施及其环境调控技术[J]. 广东农业科学, 2011, 38(21):159-160.
[38]
刘建荣, 温祥珍, 李亚灵, 等. 日光温室墙体上强制通风对室内温度和湿度的影响[J]. 山西农业科学, 2018, 46(3):421-425.
[39]
袁培, 党奥飞, 刘子扬, 等. 夏季不同通风方式对文洛型玻璃温室热环境的影响[J]. 安徽农业科学, 2018, 46(33):165-169.
[40]
徐进, 赵鹤, 王铁臣, 等. 不同降温措施对夏季塑料大棚温度的影响[J]. 蔬菜, 2020(6):20-24.
[41]
LACHHAB F, BAKHOUYA M, OULADSINE R, et al. Towards an intelligent approach for ventilation systems control using IoT and big data technologies[J]. Procedia computer science, 2018, 130:926-931.
[42]
LI Q, ZHANG D, JI J, et al. Modeling of natural ventilation using a hierarchical fuzzy control system for a new energy-saving solar greenhouse[J]. Applied engineering in agriculture, 2018, 34(6):953-962.
[43]
RIAHI J, VERGURA S, MEZGHANI D, et al. Intelligent control of the microclimate of an agricultural greenhouse powered by a supporting PV system[J]. Applied sciences, 2020, 10(4):1350.
[44]
ZHAO J, SHAN Y. A fuzzy control strategy using the load forecast for air conditioning system[J]. Energies, 2020, 13(3):530.
[45]
AKRAMI M, SALAH A H, JAVADI A A, et al. Towards a sustainable greenhouse: Review of trends and emerging practices in analysing greenhouse ventilation requirements to sustain maximum agricultural yield[J]. Sustainability, 2020, 12(7):2794.
[46]
孔国利, 苏玉. 日照温室大棚自动卷帘机与智能通风控制系统设计[J]. 湖北农业科学, 2015, 54(24):6386-6388,6393.
[47]
牟华伟, 刘双喜, 王金星, 等. 温度差动式日光温室通风系统的研制[J]. 江苏农业科学, 2016, 44(11):366-369.
[48]
张起勋. 日光温室内空气流动特性研究[D]. 长春: 吉林农业大学, 2007:49-50.
[49]
王晓微. 基于CFD的大棚微气候与通风调控研究[D]. 武汉: 武汉大学, 2013:85-88.
[50]
任守纲, 杨薇, 王浩云, 等. 基于CFD的温室气温时空变化预测模型及通风调控措施[J]. 农业工程学报, 2015, 31(13):207-214.
[51]
ZHANG X, WANG H L, ZOU ZH R, et al. CFD and weighted entropy based simulation and optimisation of Chinese solar greenhouse temperature distribution[J]. Biosystems engineering, 2016, 142:12-26.
[52]
SABERIAN A, SAJADIYE S M. The effect of dynamic solar heat load on the greenhouse microclimate using CFD simulation[J]. Renewable energy, 2019, 138(AUG.):722-737.
[53]
MUNAR E, CR BOJACÁ, BAEZA E. Transient CFD analysis of the natural ventilation of three types of greenhouses used for agricultural production in a tropical mountain climate[J]. Biosystems engineering, 2019, 188:288-304.
[54]
LI Y M, SUN F J, SHI W B, et al. Numerical simulation of ventilation performance in mushroom solar greenhouse design[J]. Energies, 2022, 15(16):5899.
[55]
肖瑶, 吴明亮. 计算流体力学在农业工程中的应用现状与发展趋势[J]. 中国农业科技导报, 2023, 25(8):1-9.
[56]
崔凯, 冯献. 面向农业4.0的智能农机装备应用逻辑、实践场景与推广建议[J]. 农业现代化研究, 2022, 43(4):9.
Share on Mendeley
PDF(1174 KB)

Accesses

Citation

Detail

Sections
Recommended

/