Effect of Plant Coverage on the Diversity and Community Structure of Soil Fungi in Banana Cropping System

ZHANGWenlong, WANGYongfen, XUShengtao, YANGLimei, ZHOUYunfan, LIXundong, ZHENGSijun

PDF(2594 KB)
PDF(2594 KB)
Chinese Agricultural Science Bulletin ›› 2024, Vol. 40 ›› Issue (23) : 60-67. DOI: 10.11924/j.issn.1000-6850.casb2023-0758

Effect of Plant Coverage on the Diversity and Community Structure of Soil Fungi in Banana Cropping System

Author information +
History +

Abstract

Due to unreasonable agricultural practices, soil degradation in banana cropping system is becoming more and more serious, which restricts the healthy and sustainable development of banana industry in China. Plant coverage could improve soil physical and chemical properties and optimize soil microbial community structure, which is an important farming practice to improve soil degradation in agricultural ecosystems. In this study, through the wide-narrow row planting method, the traditional planting method with bare soil was used as control, cultivated saritro [Macroptilium atropurpureum (DC.) Urb.] and natural weeds in wide rows were used as plant coverage treatments. With continuous positioning experiments, based on the high-throughput sequencing of the collected soil samples, the differences in soil fungal diversity and community structure were analyzed with plant coverage treatments under banana cropping system, which would explore the sustainable utilization of soil in banana production. The results showed that there were significant differences in the composition of fungal communities under different plant coverage treatments in banana cropping system, and showed an increasing trend with the continuous of plant coverage. According to the function prediction of FUNguild, compared with the bare soil control, the Saprotroph Symbiotroph guilds in 2019 and 2020 increased significantly (P≤0.05), and the fungal community of Pathogen Saprotroph guilds in 2020 decreased significantly (P≤0.05). The results of co-occurrence network analysis showed that compared with the bare soil control, the community complexity was no difference in the plant coverage treatments, but the community stability was higher. However, the differences in the core microorganisms reflected that saritro treatment reduced the dominance of Fusarium ASV, which would reduce the risk of occurrence of soil-borne disease Fusarium wilt in banana. Saritro treatment effectively increased the symbiotic beneficial fungal guilds, reduced the potential pathogenic fungal guilds, which was beneficial to maintain soil health in banana cropping system. The planting mode combining wide and narrow rows with inter-row cover plants could effectively improve soil microbial diversity, which is conducive to sustainable development of banana industry.

Key words

cover plant / banana / soil fungi / diversity / community structure

Cite this article

Download Citations
ZHANG Wenlong , WANG Yongfen , XU Shengtao , YANG Limei , ZHOU Yunfan , LI Xundong , ZHENG Sijun. Effect of Plant Coverage on the Diversity and Community Structure of Soil Fungi in Banana Cropping System. Chinese Agricultural Science Bulletin. 2024, 40(23): 60-67 https://doi.org/10.11924/j.issn.1000-6850.casb2023-0758

0 引言

香蕉是云南热带和亚热带地区重要的经济作物,是区域农民家庭收入重要来源之一,直接影响了该地区农民的收入和经济发展[1]。由于香蕉产业的经济效益好,导致了香蕉种植的长期单一作物连作和大水大肥模式,形成了典型高产出伴随着高投入的种植方式,加剧了农田生态系统的土壤严重退化[2-3],如土壤养分流失、酸化、板结和作物病害频发等,影响了区域农业产业可持续发展和乡村振兴。因此,发展相适应的农业生产方式已成为区域农业可持续发展的迫切需求。随着中国农业绿色发展理念的深入,如何增加农业生态系统的可持续性已逐渐成为农业研究热点[4]。植物覆盖能够有效改善土壤的理化性质,提升农田生态系统的土壤肥力,改善土壤微生物群落结构,间接影响了土壤养分循环和利用[5-6]。植物覆盖已在果园中广泛应用,能够有效增加果园中物种多样性,改善土壤微生物群落结构,从而缓解土壤的退化程度,促进果园的可持续生产力[7-8]。土壤微生物多样性作为衡量农业生态系统土壤健康的重要指标,其功能多样性依赖土壤中微生物的群落结构,也敏感地受到了环境因素的影响[9-10]。土壤真菌作为土壤微生物的重要组成部分,占据着不同的生态位,在调节农业生态系统的功能中发挥着至关重要的作用[11]。香蕉中套种其他作物已有相关研究,如辣椒[12]、大白菜[13]、魔芋[14]、韭菜[15]和红薯[16]等作物,能够有效控制和减少杂草的发生,降低病虫害发生程度,改善土壤质量,是提质增效的重要种植模式。由于与中国传统种植理念相悖,且香蕉种植过程中,叶片的严重遮阴,造成覆盖作物在香蕉种植中难以生长,严重影响了其在香蕉园中应用及功能发挥。因此,发展与香蕉相适应的种植模式,已成为改善中国香蕉产业可持续发展现状的重要技术手段。由于传统种植方式,导致植物难以在香蕉园实现有效覆盖,本研究通过宽窄行探索植物覆盖对土壤微生态的影响特征。本研究通过连续定位试验,在香蕉园采用宽窄行种植种模式,在宽行种植覆盖作物实现蕉园的有效覆盖,通过对植物覆盖下的土壤真菌多样性进行测序分析,明确覆盖作物下香蕉园土壤真菌多样性的影响,旨在为香蕉园作物覆盖提供理论依据和数据支持。

1 材料与方法

1.1 研究区概况

试验区位于亚热带干热河谷云南省保山市潞江镇(98°53′14″E,24°57′58″N),时间为2017年7月—2020年7月,海拔700 m,绝对最高气温40.4℃,绝对最低气温0.2℃,全年基本无霜,年平均气温21.3℃,≥10℃活动积温7800℃,适宜香蕉种植。香蕉品种选择该试验区主栽品种‘云蕉1号’,在该地区生长周期约1 a。研究区土壤初始理化性质为:pH 6.71,土壤有机质11.36 g/kg,土壤全氮0.46 g/kg,土壤全磷0.48 g/kg,土壤全钾26.81 g/kg,土壤碱解氮57.84 mg/kg,土壤有效磷28.50 mg/kg,土壤有效钾95.86 mg/kg。

1.2 试验设计

试验以常规种植行间无覆盖物为对照(CK),处理为行间自然生杂草(NW)和种植大翼豆(CP)。试验采用随机区组设计,4次重复。小区面积为135 m2,每小区定植香蕉苗30株。采用宽窄行的方式种植,宽行行距3.5 m,窄行行距1.5 m,香蕉苗定植在窄行上,采用双行种植,种植采用错行的“之”字形,株距2.0 m。2017年7月定植香蕉苗,香蕉种植过程中的水肥和病虫害管理参照当地的传统种植方式。大翼豆种植时间为2017年4月,种植方式为条播,播种量为7~10 g/m2,行间的覆盖植物的覆盖度及高度主要通过补播和刈割等物理方式管理。在香蕉生长前期,所有覆盖植物的高度保持在30cm以下,以避免其对主栽作物香蕉生长的影响,需保证60%以上的覆盖度才能达到覆盖效果。

1.3 测定指标及方法

土壤样品在行间的覆盖植物处理区域采集,第一次采集时间为2017年7月,之后分别在每年7月。样品采用“S”形方式在0~20 cm土层采集,每个小区用 3 cm直径的土钻采集15个点,混匀去除植物根系与残留凋落物,后过2 mm筛,采用“四分法”选取约20 g土壤样品装入无菌袋内,置于冰盒中带回实验室,放 于-80℃冰箱中保存备用,用于土壤真菌多样性测序。
土壤的DNA采用OMEGA土壤DNA提取试剂盒(D5625-01)抽提,用NanoDrop ND-1000分光光度计和琼脂糖凝胶电泳检测提取的土壤DNA浓度和质量。使用正向引物ITS5F (5'-GGAAGTAAAAGTCGTAACAAGG-3')和反向引物ITS1R (5'-GCTGCGTTCTTCATCGATGC-3')对真菌ITS1区域进行PCR扩增。样品特异性7-bp条形码被纳入多重测序的引物中。PCR包含5 μL Q5反应缓冲液(5×)、5 μL Q5高保真GC 缓冲液(5×)、0.25 μL Q5高保真DNA聚合酶(5 U/μL)、2 μL 2.5 mM) dNTP,1 μL每10 uM ITS5F和ITS1R引物、2 μL DNA模板和8.75 μL ddH2O。热循环包括98℃ 2 min的初始循环,然后是98℃ 15 s、55℃ 30 s和72℃ 30 s的25个循环,最后一个循环为5 min,温度为72℃。PCR扩增子用 Agencourt AMPure Beads (Beckman Coulter, Indianapolis, IN, USA)纯化,并用PicoGreen dsDNA Assay Kit (Invitrogen, Carlsbad, CA, USA)对回收产物进行检测、定量。使用MiSeq Reagent Kit对纯化后的PCR产物进行建库。利用测序公司的Illlumina MiSeq平台进行双端300 bp测序。

1.4 数据处理

使用QIIME2进行微生物组生物信息学分析。所有数据分析包都基于R 4.1.2。Alpha多样性指数是根据Chao1和Shannon指数;使用Bray Curtis指标对OUT进行抽平分析,用于评估β-多样性和构建PCoA图;使用DADA2插件对序列进行质量过滤、去噪、合并和移除嵌合体。非单例扩增子序列变体(ASV)与mafft齐,并使用fasttree2构建树。使用特征分类器插件中针对UNITE 8.0版数据库的classify-sklearn朴素贝叶斯分类法将分类法分配给ASV。

1.5 数据分析

所有分析均基于R 4.1.2。Vegan包计算α多样性(Chao1和Shannon指数)和置换多元方差分析(PERMANOVA)。Python LEfSe包进行LEfSe分析(LDA Effect Size)。使用在线应用程序FUNGILD将真菌ASV分配到功能性组(http://www.stbates.org/guilds/app.php)。利用ggclusternet绘制相关性网络图和筛选核心物种,网络图中各边的相关系数R>0.7且P<0.05。

2 结果与分析

2.1 土壤真菌多样性和丰富度

蕉园植物覆盖处理下土壤真菌和丰度如图1所示,覆盖处理的土壤真菌多样性采用Chao1和Shannon指数进行分析,结果表明不同覆盖处理蕉园土壤真菌Chao1和Shannon指数无显著差异(P>0.05)。
图1 植物覆盖对蕉园土壤真菌多样性Chao1和Shannon 指数的影响

Full size|PPT slide

2.2 土壤真菌群落组成

基于PERMANOVE分析,蕉园植物覆盖处理下真菌群落组成如图2所示,2018年不同植物覆盖处理间无显著差异(P>0.05),2019和2020年差异显著(P<0.001),表明随着植物覆盖年限的增加,不同植物覆盖处理间差异程度呈现逐渐增加的趋势,这说明植物覆盖有效的改变了土壤真菌群落结构组成。
图2 植物覆盖处理对蕉园土壤真菌群落组成的影响

Full size|PPT slide

2.3 土壤优势真菌差异

利用Lefse分析对蕉园不同植物覆盖植物处理下标志的优势真菌属(相对丰度大于0.5%)进行鉴定。 如图3所示,结果表明,2018—2020年随着覆盖植物处理的持续进行,覆盖植物处理的标志真菌类群增多。大翼豆覆盖处理标志真菌类群较多,2018年大翼豆覆盖处理土壤标志真菌类群为ChaetomiaceaeHumicola,2019年为ColletotrichumGlomerellaceaeGlomerellalesAuricularialesExidiaceaeExidia,2020年MortierellomycetesMortierellaMortierellomycotaMortierellalesMortierellaceaePlectosphaerellaceaeGlimerellalesPlectophaerella。自然生杂草处理对优势真菌类群影响较小,NW处理的2018年优势土壤真菌类群为VolvopluteusPluteaceaeAgaricales,2019年为Corynascella,2020年为FusicollaClavicipitaceaeMetarhizium
图3 植物覆盖处理下蕉园土壤真菌物种差异比较

Full size|PPT slide

2.4 FUNguild功能预测

蕉园不同植物覆盖处理土壤真菌功能群落的FUNguild功能预测如图4所示,与对照相比,豆科植物大翼豆覆盖处理2019年和2020年Saprotroph_Symbiotroph guilds真菌种群显著地(P<0.05)增加,2020年Pathogen_Saprotroph guilds真菌群落显著(P<0.05)降低,其他真菌群落处理间差异不显著(P>0.05)。结果表明,豆科植物大翼豆处理可有效提高共生有益菌群,减少潜在病原菌群,有利于为香蕉种植塑造更健康的土壤。
图4 植物覆盖处理下土壤真菌功能预测分析

Full size|PPT slide

2.5 共线性网络分析

豆科覆盖和裸露土壤处理下的土壤真菌群落中ASVs(相对丰度大于0.5%)的相关性网络分析如图5所示。豆科覆盖负相关边的比例相比对照高,平均度差异不显著(P>0.05),这些结果表明两群落复杂性无差异,但豆科覆盖网络稳定性高。2个网络的Network hub和Module hub ASV存在差异,Zi和Pi对OTU进行分类的阈值分别为2.5和0.62(图6),Hub得分和分类如表1所示,提供了Hub ASV分类及评分状况。对照和大翼豆处理的2个共线性网络均有ASV_487和ASV_1178。豆科覆盖hub ASV最主要的为青霉菌属(Network hub2),无覆盖物对照处理的hub ASV主要为镰刀菌属(Network hub 2, Module hub 1)。核心微生物的差异可能反映了豆科覆盖可能通过减少镰刀属ASV在群落中主导力,降低了可能带来的土传病害枯萎病的发生风险。
图5 共线性网络分析图

A为2019年和2020年处理CK和CP土壤真菌群落共线性网络。B和C为2个共生网络的度和正负相关比例

Full size|PPT slide

图6 Zi-Pi散点图是各类ASVs根据CK和CP下的拓扑结构的分布图

Zi和Pi值分别大于2.5和0.62q

Full size|PPT slide

表1 Hub ASV 的评分和分类
处理 OTU 模块 标准分数 参与系数
CK ASV_7829 1 0.80 0.65 Basidiomycota Micropsalliota
ASV_3106 1 0.80 0.64 Ascomycota Fusarium
ASV_487 1 -1.05 0.68 Ascomycota Plectosphaerella
ASV_2255 1 0.39 0.62 Ascomycota Chrysosporium
ASV_6057 1 -0.44 0.68 Ascomycota Corynascella
ASV_4873 1 -0.64 0.69 unidentified unclassified
ASV_2838 1 -1.67 0.69 Ascomycota unclassified
ASV_4966 4 2.55 0.17 Ascomycota Acremonium
ASV_7237 4 2.55 0.12 Ascomycota Plectosphaerella
ASV_4960 4 -0.11 0.63 Ascomycota Fusarium
ASV_4120 4 0.46 0.64 Ascomycota Fusarium
ASV_6961 2 2.52 0.28 Ascomycota Aspergillus
ASV_1178 2 1.22 0.64 Ascomycota unclassified
ASV_2809 3 1.82 0.68 Ascomycota Talaromyces
ASV_6553 3 -1.19 0.63 Ascomycota Chaetomium
ASV_2978 5 -0.98 0.67 Ascomycota Chrysosporium
CP ASV_2523 7 0.68 0.67 Ascomycota Colletotrichum
ASV_5006 6 0.03 0.65 Ascomycota unclassified
ASV_1841 6 0.81 0.68 Ascomycota Acremonium
ASV_7219 1 -0.50 0.64 unidentified unclassified_Fungi
ASV_7350 1 0.29 0.69 Ascomycota Arachniotus
ASV_2457 1 -2.08 0.69 Ascomycota Penicillium
ASV_487 2 -0.37 0.68 Ascomycota Plectosphaerella
ASV_2985 2 1.57 0.63 Ascomycota Penicillium
ASV_5433 2 1.38 0.67 Basidiomycota Symmetrospora
ASV_7868 2 -0.17 0.63 Ascomycota Dokmaia
ASV_1178 3 0.00 0.63 Ascomycota unidentified

3 结论

本研究中,植物覆盖处理对蕉园土壤真菌群落多样性的影响随着覆盖年限的增加呈逐渐加强的趋势。豆科植物大翼豆处理有效提高了共生有益真菌群,减少了潜在的致病真菌群,有利于保持香蕉种植中的土壤健康。宽窄行与行间覆盖植物相结合的种植技术可有效改善土壤微生物多样性,有利于保持土壤健康和香蕉产业的可持续发展,但由于本研究中植物覆盖年限有限,对蕉园土壤微生态的影响还需要进一步系统研究。

4 讨论

本研究结果表明植物覆盖有效影响了土壤真菌组成和核心功能真菌群,并且随着香蕉种植系统下连续覆盖植物的增加,这种影响呈逐渐增加的趋势。这与SCHMIDT[17]研究表明植物覆盖改变了土壤真菌群落功能组成,并增加了真菌群落多样性的结果一致;同时,也与THAPA等[18]研究表明土壤真菌群落结构受覆盖植物生物量和物种的影响结果一致。由于土壤真菌和细菌等微生物对环境因素很敏感,受到土壤水分、pH、温度和有机质含量等多种环境因素的影响[5,19]。在本研究中,土壤真菌与环境因素的相互作用需要更进一步深入分析,从而更系统地了解植物覆盖的土壤微生物机制,进而阐明其对农业生态系统中土壤养分循环和土壤健康的影响机制。因此,覆盖植物对蕉园土壤生态系统的影响需要通过长期定位试验进一步系统研究。
大翼豆覆盖处理的优势真菌类群是被孢霉属,有研究认为被孢霉属是抑制香蕉枯萎病土壤的标志性真菌类群[20]。根据共线性网络分析,大翼豆覆盖处理的土壤真菌群落的稳定性更高,正相关共线性的数量最少,负相关的共线性数量高于常规耕作。由于生态系统稳定性和真菌植物病原体呈负相关,土壤真菌的较高稳定性可被认为对香蕉生产有积极影响[21],较少数量的正相关共线性表明共生关系减少,较高数量的负相关共线性表明竞争和拮抗水平增加[22]。与常规耕作相比,植物覆盖下的土壤具有较高Saprotroph_symbiotroph和较低Pathotroph_saprotroph的菌群,大翼豆处理有效提高了共生有益菌群,减少了潜在致病菌群,这与土壤中优势真菌类群被孢菌群是抑制香蕉枯萎病的标志菌群互相印证[20],从而降低了香蕉种植中可能带来的香蕉枯萎病的发生风险。天然杂草覆盖处理的土壤优势菌群梭菌属(Fusicolla)、麦角菌科(Clavicipitaceae)和绿僵菌(Metarhizium)。LI等[23]研究认为梭菌属可以抑制猕猴桃的软腐病,麦角菌科[24]和绿僵菌[25]可以刺激植物生长。已有研究表明覆盖植物能够有效抑制土传病害的发生,如芥菜可有利于甜菜丝核菌根腐病的防控[26]和葡萄根腐病[27],但在由于香蕉作物的特殊性,研究植物覆盖对香蕉枯萎病的影响较少。结合配套的种植制度,植物覆盖可作为维持土壤健康和香蕉产业可持续发展的绿色种植技术。
果园中进行植物覆盖研究较多,如苹果[28]、柑橘[29]、杏[30],这将有利于土壤质量的维持与提升,包括物理、化学和生物特性。覆盖植物在蕉园中难以落地,客观上与香蕉叶片过于遮光,直接导致许多覆盖植物难以生长,主观上与种植者的经济效益有关,种植者认为覆盖植物会与香蕉产生水肥竞争,影响了香蕉的产量和效益。目前,单一连作的种植模式导致了严重的土壤退化,同时也为香蕉枯萎的发生提供了有利的条件,越来越多的蕉园由于枯萎病而被抛弃[31-32]。本研究采用宽窄行种植香蕉,在窄行内采用之字形种植香蕉,在保证种植密度的同时为覆盖植物提供了生长空间,宽行可作为农机操作通道,能有效降低香蕉生产中的劳动强度。此外,香蕉通常种植在热带地区,利用热带地区充足的热量和降水,通过对覆盖植物的筛选,可对其进行有效刈割,是重要的饲料来源和绿肥资源。综上所述,宽窄行与行间覆盖植物相结合是一种健康的香蕉绿色生产栽培技术,可改变香蕉单一种植模式的现状,促进香蕉种植制度的多样性。

References

[1]
伏成秀, 李迅东, 张远强, 等. 云南香蕉产业发展现状及竞争力比较[J]. 热带农业科学, 2022, 42(8):92-98.
[2]
CHEN X J, ZENG D, XU Y, et al. Perceptions, risk attitude and organic fertilizer investment: Evidence from rice and banana farmers in Guangxi, China[J]. Sustainability, 2018, 10(10):3715.
[3]
ZHONG S, MO Y, GUO G, et al. Effect of continuous cropping on soil chemical properties and crop yield in banana plantation[J]. Journal of agricultural science and technology, 2014, 16(1):239-250.
[4]
杜志雄, 金书秦. 从国际经验看中国农业绿色发展. 世界农业, 2021, 2:4-9.
[5]
WELCH R Y, BEHNKE G D, DAVIS A S, et al. Using cover crops in headlands of organic grain farms: Effects on soil properties, weeds and crop yields[J]. Agriculture ecosystems & environment, 2016, 216:322-332.
[6]
张玲玲, 李青梅, 贾梦圆, 等. 覆盖作物对猕猴桃园土壤氨氧化微生物丰度和群落结构的影响[J]. 植物营养与肥料学报, 2021, 27(3):417-428.
[7]
郭晓睿, 宋涛, 邓丽娟, 等. 果园生草对中国果园土壤肥力和生产力影响的整合分析[J]. 应用生态学报, 2021, 32(11):4021-4028.
果园生草是维持土壤基础肥力、改善土壤生态环境、推动果树产业可持续发展的有效措施之一。但是,有关生草对果园土壤养分含量的定量改变,及其对果园果实产量和品质的提升机制并不清楚。本研究采用Meta分析,共搜集了1990—2020年间发表的62篇文献,定量分析土层深度、生草种植年限和生草植物种类对果园土壤理化性质和果实产量及品质的影响,探究果园生草对中国果园可持续生产的影响。结果表明: 1990—2020年间,与不生草果园相比,果园生草土壤有机质、碱解氮、速效磷含量可分别提高18%、11%、27%,土壤容重降低20%;当气温低于10 ℃时,果园生草可使土壤温度增加23%;当气温高于10 ℃时,果园生草可使土壤温度平均降低8%左右。与一年生草相比,果园连续多年生草,无论是自然生草,还是人工生草,都显著提升了果园土壤质量、产量和果实品质(如可溶性固形物)。因此,果园长期生草对中国果园可持续生产具有深远意义。
[8]
钱雅丽, 王先之, 来兴发, 等. 多年生牧草种植对苹果园土壤真菌群落特征的影响[J]. 草业学报, 2019, 28(11):124-132.
以陇东黄土高原区13龄苹果园为研究对象,采用高通量测序法分析鸭茅、白三叶和紫花苜蓿3种生草模式下0~10 cm土层真菌群落结构多样性,同时结合OTUs数探讨不同生草模式下的特异菌属。结果表明,与对照(清耕)相比,鸭茅、白三叶和紫花苜蓿生草模式下土壤真菌Alpha多样性分别增加17.4%、18.6%和27.0%。土壤真菌群落在门水平上主要隶属于子囊菌门、接合菌门、担子菌门和球囊菌门,鸭茅、白三叶和紫花苜蓿处理下接合菌门相对丰度较对照分别增加196.2%、169.8%和126.9%;在属水平下,3种生草模式下镰孢霉属相对丰度均高于对照,茎点霉属在白三叶和紫花苜蓿处理中相对丰度较高。嗜热真菌属出现在鸭茅处理中,该菌属与蛋白质和糖类降解有关。葡萄穗霉属和放射毛霉属出现在种植白三叶的土壤中,其分泌的分解酶类与植物纤维和半纤维的分解有密切关系;枝孢属和葡萄座腔菌属存在于紫花苜蓿处理中。
[9]
CYCOŃ M, MROZIK A, PIOTROWSKA-SEGET Z. Antibiotics in the soil environment-degradation and their impact on microbial activity and diversity[J]. Frontiers in microbiology, 2019, 10:338.
Antibiotics play a key role in the management of infectious diseases in humans, animals, livestock, and aquacultures all over the world. The release of increasing amount of antibiotics into waters and soils creates a potential threat to all microorganisms in these environments. This review addresses issues related to the fate and degradation of antibiotics in soils and the impact of antibiotics on the structural, genetic and functional diversity of microbial communities. Due to the emergence of bacterial resistance to antibiotics, which is considered a worldwide public health problem, the abundance and diversity of antibiotic resistance genes (ARGs) in soils are also discussed. When antibiotic residues enter the soil, the main processes determining their persistence are sorption to organic particles and degradation/transformation. The wide range of DT50 values for antibiotic residues in soils shows that the processes governing persistence depend on a number of different factors, e.g., physico-chemical properties of the residue, characteristics of the soil, and climatic factors (temperature, rainfall, and humidity). The results presented in this review show that antibiotics affect soil microorganisms by changing their enzyme activity and ability to metabolize different carbon sources, as well as by altering the overall microbial biomass and the relative abundance of different groups (i.e., Gram-negative bacteria, Gram-positive bacteria, and fungi) in microbial communities. Studies using methods based on analyses of nucleic acids prove that antibiotics alter the biodiversity of microbial communities and the presence of many types of ARGs in soil are affected by agricultural and human activities. It is worth emphasizing that studies on ARGs in soil have resulted in the discovery of new genes and enzymes responsible for bacterial resistance to antibiotics. However, many ambiguous results indicate that precise estimation of the impact of antibiotics on the activity and diversity of soil microbial communities is a great challenge.
[10]
朱永官, 彭静静, 韦中, 等. 土壤微生物组与土壤健康[J]. 中国科学:生命科学, 2021, 51(1):1-11.
[11]
张晶, 张惠文, 李新宇, 等. 土壤真菌多样性及分子生态学研究进展[J]. 应用生态学报, 2004, 15(10):1958-1962.
真菌是土壤中一类重要的微生物,参与有机质分解,与植物共生为植物提供养分,同时病原真菌也会引起粮食产量的降低.土壤真菌多样性在维持生态系统的平衡和为人类提供大量未开发资源上起到了独特而重要的作用.本文从物种多样性、生境多样性、功能多样性角度阐述了土壤真菌多样性,并从农田、林地、草地、极端环境与一些复杂环境土壤真菌多样性层面综述了土壤真菌多样性分子生态学研究进展,同时论述了一些影响真菌多样性的因素,并对土壤真菌多样性研究的前景提出展望.
[12]
柯开文, 李润唐, 林望达, 等. 秋植香蕉和辣椒复合生产模式应用评价[J]. 中国热带农业, 2012(3):50-52.
[13]
黄继庆, 潘启城, 黄生文. 田东县秋植蕉园套种大白菜栽培技术[J]. 现代农业科技, 2012(6):130-131.
[14]
李进波, 陈静英, 罗江, 等. 香蕉园下魔芋套种技术[J]. 农村实用技术, 2015(4):26-28.
[15]
赵明, 何海旺, 邹瑜, 等. 广西香蕉枯萎病为害调查及套种韭菜防控效果研究[J]. 中国南方果树, 2015, 44(5):55-58.
[16]
汪军, 周游, 杨腊英, 等. 施用复合菌肥与套作对香蕉枯萎病控病作用的影响[J]. 中国果树, 2019(6):69-72.
[17]
SCHMIDT R, MITCHELL J, SCOW K. Cover cropping and no-till increase diversity and symbiotroph: saprotroph ratios of soil fungal communities[J]. Soil biology and biochemistry, 2019, 129:99-109.
[18]
THAPA V R, GHIMIRE R, ACOSTA-MARTÍNEZ V, et al. Cover crop biomass and species composition affect soil microbial community structure and enzyme activities in semiarid cropping systems[J]. Applied soil ecology, 2021, 157:103735.
[19]
TAJIK S, AYOUBI S, LORENZ N. Soil microbial communities affected by vegetation, topography and soil properties in a forest ecosystem[J]. Applied soil ecology. 2020, 149:103514.
[20]
YUAN J, WEN T, ZHANG H, et al. Predicting disease occurrence with high accuracy based on soil macroecological patterns of Fusarium wilt[J]. The ISME journal, 2020, 14(12):2936-2950.
[21]
LIU S G, GARCÍA-PALACIOS P, TEDERSOO L, et al. Phylotype diversity within soil fungal functional groups drives ecosystem stability[J]. Nature ecology & evolution, 2022, 6(7):900-909.
[22]
COYTE K Z, SCHLUTER J, FOSTER K R. The ecology of the microbiome: networks, competition, and stability[J]. Science, 2015, 350(6261):663-666.
The human gut harbors a large and complex community of beneficial microbes that remain stable over long periods. This stability is considered critical for good health but is poorly understood. Here we develop a body of ecological theory to help us understand microbiome stability. Although cooperating networks of microbes can be efficient, we find that they are often unstable. Counterintuitively, this finding indicates that hosts can benefit from microbial competition when this competition dampens cooperative networks and increases stability. More generally, stability is promoted by limiting positive feedbacks and weakening ecological interactions. We have analyzed host mechanisms for maintaining stability-including immune suppression, spatial structuring, and feeding of community members-and support our key predictions with recent data. Copyright © 2015, American Association for the Advancement of Science.
[23]
LI W Z, LONG Y H, MO F X, et al. Antifungal activity and biocontrol mechanism of Fusicolla violacea J-1 against soft rot in kiwifruit caused by Alternaria alternata[J]. Journal of fungi, 2021, 7(11):937.
[24]
SASAN R K, BIDOCHKA M J. The insect-pathogenic fungus Metarhizium robertsii (Clavicipitaceae) is also an endophyte that stimulates plant root development[J]. American journal of botany, 2012, 99(1):101-107.
The soil-inhabiting insect-pathogenic fungus Metarhizium robertsii also colonizes plant roots endophytically, thus showing potential as a plant symbiont. Metarhizium robertsii is not randomly distributed in soils but preferentially associates with the plant rhizosphere when applied in agricultural settings. Root surface and endophytic colonization of switchgrass (Panicum virgatum) and haricot beans (Phaseolus vulgaris) by M. robertsii were examined after inoculation with fungal conidia.We used light and confocal microscopy to ascertain the plant endophytic association with GFP-expressing M. robertsii. Root lengths, root hair density, and lateral roots emerged were also observed.Initially, M. robertsii conidia adhered to, germinated on, and colonized roots. Furthermore, plant roots treated with Metarhizium grew faster and the density of plant root hairs increased when compared with control plants. The onset of plant root hair proliferation was initiated before germination of M. robertsii on the root (within 1-2 d). Plants inoculated with M. robertsii ΔMAD2 (plant adhesin gene) took significantly longer to show root hair proliferation than the wild type. Cell free extracts of M. robertsii did not stimulate root hair proliferation. Longer-term (60 d) associations showed that M. robertsii endophytically colonized cortical cells within bean roots. Metarhizium appeared as a mycelial aggregate within root cortical cells as well as between the intercellular spaces with no apparent damage to the plant.These results suggest that M. robertsii is not only rhizosphere competent but also displays a beneficial endophytic association with plant roots that results in the proliferation of root hairs.
[25]
LIAO X G, O’BRIEN T R, FANG W G, et al. The plant beneficial effects of Metarhizium species correlate with their association with roots[J]. Applied microbiology and biotechnology, 2014, 98:7089-7096.
Metarhizium species have recently been found to be plant rhizosphere associates as well as insect pathogens. Because of their abundance, rhizospheric Metarhizium could have enormous environmental impact, with co-evolutionary implications. Here, we tested the hypothesis that some Metarhizium spp. are multifactorial plant growth promoters. In two consecutive years, corn seeds were treated with entomopathogenic Metarhizium spp. and field tested at the Beltsville Facility in Maryland. Seed treatments included application of green fluorescent protein (GFP)-tagged strains of Metarhizium brunneum, Metarhizium anisopliae, Metarhizium robertsii, and M. robertsii gene disruption mutants that were either avirulent (Δmcl1), unable to adhere to plant roots (Δmad2), or poorly utilized root exudates (Δmrt). Relative to seeds treated with heat-killed conidia, M. brunneum, M. anisopliae, and M. robertsii significantly increased leaf collar formation (by 15, 14, and 13 %), stalk length (by 16, 10, and 10 %), average ear biomass (by 61, 56, and 36 %), and average stalk and foliage biomass (by 46, 36, and 33 %). Their major impact on corn yield was during early vegetative growth by allowing the plants to establish earlier and thereby potentially outpacing ambient biotic and abiotic stressors. Δmcl1 colonized roots and promoted plant growth to a similar extent as the parent wild type, showing that Metarhizium populations are plant growth promoters irrespective of their role as insect pathogens. In contrast, rhizospheric populations and growth promotion by Δmrt were significantly reduced, and Δmad2 failed to colonize roots or impact plant growth, suggesting that colonization of the root is a prerequisite for most, if not all, of the beneficial effects of Metarhizium.
[26]
MOTISI N, MONTFORT F, FALOYA V, et al. Growing Brassica juncea as a cover crop, then incorporating its residues provide complementary control of Rhizoctonia root rot of sugar beet[J]. Field crops research, 2009, 113(3):238-245.
[27]
RICHARDS A, ESTAKI M, ÚRBEZ-TORRES J R, et al. Cover crop diversity as a tool to mitigate vine decline and reduce pathogens in vineyard soils[J]. Diversity, 2020, 12(4):128.
[28]
ZHENG W, ZHAO Z Y, LV F L, et al. Assembly of abundant and rare bacterial and fungal sub-communities in different soil aggregate sizes in an apple orchard treated with cover crop and fertilizer[J]. Soil biology and biochemistry, 2021, 156:108222.
[29]
VAN DUNG T, NGOC N P, HUNG N N. Impact of cover crop and mulching on soil physical properties and soil nutrients in a citrus orchard[J]. PeerJ, 2022, 10:e14170.
[30]
DEMIR Z, TURSUN N, IŞIK D. Effects of different cover crops on soil quality parameters and yield in an apricot orchard[J]. International journal of agriculture and biology, 2019, 21(2):399-408.
[31]
HONG S, JV H L, LU M, et al. Significant decline in banana Fusarium wilt disease is associated with soil microbiome reconstruction under chilli pepper-banana rotation[J]. European Journal of soil biology, 2020, 97:103154.
[32]
SHEN Z Z, PENTON C R, LV N N, et al. Banana Fusarium wilt disease incidence is influenced by shifts of soil microbial communities under different monoculture spans[J]. Microbial ecology, 2018, 75:739-750.
The continuous cropping of banana in the same field may result in a serious soil-borne Fusarium wilt disease and a severe yield decline, a phenomenon known as soil sickness. Although soil microorganisms play key roles in maintaining soil health, the alternations of soil microbial community and relationship between these changes and soil sickness under banana monoculture are still unclear. Bacterial and fungal communities in the soil samples collected from banana fields with different monoculture spans were profiled by sequencing of the 16S rRNA genes and internal transcribed spacer using the MiSeq platform to explore the relationship between banana monoculture and Fusarium wilt disease in the present study. The results showed that successive cropping of banana was significantly correlated with the Fusarium wilt disease incidence. Fungal communities responded more obviously and quickly to banana consecutive monoculture than bacterial community. Moreover, a higher fungal richness significantly correlated to a higher banana Fusarium wilt disease incidence but a lower yield. Banana fungal pathogenic genus of Fusarium and Phyllosticta were closely associated with banana yield depletion and disease aggravation. Potential biocontrol agents, such as Funneliformis, Mortierella, Flavobacterium, and Acidobacteria subgroups, exhibited a significant correlation to lower disease occurrence. Further networks analysis revealed that the number of functionally interrelated modules decreased, the composition shifted from bacteria- to fungi-dominated among these modules, and more resources-competitive interactions within networks were observed after banana long-term monoculture. Our results also showed that bacterial and fungal communities were mainly driven by soil organic matter. Overall, the findings indicated that the bacterial and fungal community structures altered significantly after banana long-term monoculture, and the fungal richness, abundance of Fusarium, interactions between and within bacteria and fungi in ecological networks, and soil organic matter were associated with banana soil-borne Fusarium wilt disease.
Share on Mendeley
PDF(2594 KB)

Collection(s)

Agroecology

85

Accesses

0

Citation

Detail

Sections
Recommended

/