Regulation Effect of Biochar on Bacterial Community in Cotton Field Soil under Saline Water Drip Irrigation

YEYang, XIANGGuiqin, GUOXiaowen, MINWei, GUOHuijuan

PDF(2063 KB)
PDF(2063 KB)
Chinese Agricultural Science Bulletin ›› 2024, Vol. 40 ›› Issue (6) : 91-100. DOI: 10.11924/j.issn.1000-6850.casb2023-0236

Regulation Effect of Biochar on Bacterial Community in Cotton Field Soil under Saline Water Drip Irrigation

Author information +
History +

Abstract

To explore the regulation effects of biochar application on soil physicochemical properties and bacterial communities in cotton field soil under long-term saline water irrigation, based on long-term saline water (8.04 dS/m) irrigation, three treatments were set up for field positioning experiments: no nitrogen fertilizer application (N0), nitrogen fertilizer treatment (N360) and biochar combined with nitrogen fertilizer treatment (BC). Determination of soil bacterial community composition was conducted by high-throughput sequencing technology. The results showed that compared with N0 treatment, N360 treatment significantly increased soil electrical conductivity and total nitrogen, but significantly decreased soil pH and available phosphorus content; BC treatment significantly increased soil water content, electrical conductivity, total carbon, total nitrogen and available potassium content. Compared with N0 treatment, N360 and BC decreased the Shannon and Simpson indices of bacterial communities, while N360 treatment increased the Chao 1 and ACE indices. The dominant bacteria at phylum level were Proteobacteria, Acidobacteriota and Actinobacteriota; the dominant bacteria at genus level were Nitrosospira, RB41 and Sphingomonas. N360 treatment increased the relative abundance of Proteobacteria, Acidobacteriota and Firmicutes, but decreased the relative abundance of Actinobacteriota, Gemmatimonadota and Thermoplasmatota; BC treatment increased the relative abundance of Actinobacteriota, Nitrospirota and Chloroflexi, while decreased the relative abundance of Acidobacteriota, Bacteroidota and Verrucomicrobiota. LEfSe analysis showed that both N360 and BC treatments reduced the number of potential biomarkers of bacteria. The RDA results showed a significant correlation between soil bacterial community structure and soil total nitrogen and available potassium content. Nitrogen fertilizer and Biochar combined with nitrogen fertilizer can regulate soil physicochemical properties, thus regulating soil bacterial community structure, which can form dominant species to adapt to salt environment.

Key words

saline water irrigation / biochar / nitrogen fertilizer / cotton field soil / bacterial community

Cite this article

Download Citations
YE Yang , XIANG Guiqin , GUO Xiaowen , MIN Wei , GUO Huijuan. Regulation Effect of Biochar on Bacterial Community in Cotton Field Soil under Saline Water Drip Irrigation. Chinese Agricultural Science Bulletin. 2024, 40(6): 91-100 https://doi.org/10.11924/j.issn.1000-6850.casb2023-0236

References

[1]
刘赛华, 杨广, 张秋英, 等. 典型荒漠植物梭梭在咸水滴灌条件下土壤水盐运移特性[J]. 灌溉排水学报, 2020, 39(1):52-60.
[2]
贾咏霖, 屈忠义, 丁艳宏, 等. 不同灌溉方式下施用生物炭对土壤水盐运移规律及玉米水分利用效率的影响[J]. 灌溉排水学报, 2020, 39(8):44-51.
[3]
闵伟, 侯振安, 冶军, 等. 长期咸水滴灌棉田土壤微生物活性及群落功能多样性[J]. 生态学杂志, 2014, 33(11):2950-2958.
通过田间试验研究不同灌溉水矿化度和施氮量对土壤微生物数量、土壤呼吸及土壤微生物群落功能多样性的影响。试验设置3种灌溉水矿化度(电导率,EC<sub>1∶5</sub>)分别为0.35、4.61和8.04 dS&middot;m<sup>-1</sup>(分别代表淡水、微咸水和咸水);同时,设置4个施氮水平:0、240、360和480 kg N&middot;hm<sup>-2</sup>。结果表明:细菌数量随灌溉水矿化度的增加呈先增加后降低的趋势,施用氮肥可增加细菌数量,但当氮肥用量超过240 kg&middot;hm<sup>-2</sup>后,细菌数量显著降低;真菌和放线菌数量随灌溉水矿化度的增加而增加,与不施氮相比,施用氮肥显著降低放线菌数量;淡水处理细菌/真菌显著大于微咸水和咸水处理,分别较微咸水和咸水处理高29%和86%,细菌/真菌在240 kg N&middot;hm<sup>-2</sup>处理下最高;土壤呼吸随灌溉水矿化度的增加而显著降低,淡水处理分别较微咸水和咸水处理高12%和33%,土壤呼吸随施氮量的增加而增加,360和480 kg N&middot;hm<sup>-2</sup>处理分别较不施氮处理增加48%和51%;AWCD值随灌溉水矿化度的增加而降低,淡水处理AWCD值分别较微咸水和咸水处理高3%和13%;灌溉水矿化度对丰富度指数、Shannon指数和Shannon均匀度指数无显著影响,但对Simpson指数影响显著,咸水处理Simpson指数最高,240 kg N&middot;hm<sup>-2</sup>施氮处理土壤微生物群落多样性指数最高。因此,咸水灌溉显著影响土壤微生物数量和群落功能多样性,合理施用氮肥有助于保持土壤微生物活性和多样性。
[4]
王丽渊, 丁松爽, 刘国顺. 生物质炭土壤改良效应研究进展[J]. 中国土壤与肥料, 2014(3):1-6.
[5]
吴忠东, 王卫华, 张照录, 等. 咸淡组合淋洗对土壤水盐分布特征的影响[J]. 排灌机械工程学报, 2014, 32(12):1085-1090.
[6]
ALBDAIWI R N, KHYAMI H H, AYAD J Y, et al. Isolation and characterization of halotolerant plant growth promoting rhizobacteria from durum wheat (Triticum turgidum subsp. durum) cultivated in saline areas of the dead sea region[J]. Frontiers in microbiology, 2019, 10:1639-1655.
[7]
肖颖. 盐分对辽河口湿地土壤有机碳矿化的影响[D]. 沈阳: 沈阳大学, 2016.
[8]
曾维爱, 杨昭玥, 黄洋, 等. 长期连作农田土壤细菌群落结构和共现网络拓扑性质对土壤理化性质的响应[J]. 微生物学报, 2022, 62(6):2403-2416.
[9]
FIERER N. Embracing the unknown: disentangling the complexities of the soil microbiome[J]. Nature reviews microbiology, 2017, 15(10):579-590.
Soil microorganisms are clearly a key component of both natural and managed ecosystems. Despite the challenges of surviving in soil, a gram of soil can contain thousands of individual microbial taxa, including viruses and members of all three domains of life. Recent advances in marker gene, genomic and metagenomic analyses have greatly expanded our ability to characterize the soil microbiome and identify the factors that shape soil microbial communities across space and time. However, although most soil microorganisms remain undescribed, we can begin to categorize soil microorganisms on the basis of their ecological strategies. This is an approach that should prove fruitful for leveraging genomic information to predict the functional attributes of individual taxa. The field is now poised to identify how we can manipulate and manage the soil microbiome to increase soil fertility, improve crop production and improve our understanding of how terrestrial ecosystems will respond to environmental change.
[10]
PANKE B K, POOLE A C, GOODRICH J K, et al. Selection on soil microbiomes reveals reproducible impacts on plant function[J]. The isme journal, 2015, 9(4):980-989.
Soil microorganisms found in the root zone impact plant growth and development, but the potential to harness these benefits is hampered by the sheer abundance and diversity of the players influencing desirable plant traits. Here, we report a high level of reproducibility of soil microbiomes in altering plant flowering time and soil functions when partnered within and between plant hosts. We used a multi-generation experimental system using Arabidopsis thaliana Col to select for soil microbiomes inducing earlier or later flowering times of their hosts. We then inoculated the selected microbiomes from the tenth generation of plantings into the soils of three additional A. thaliana genotypes (Ler, Be, RLD) and a related crucifer (Brassica rapa). With the exception of Ler, all other plant hosts showed a shift in flowering time corresponding with the inoculation of early- or late-flowering microbiomes. Analysis of the soil microbial community using 16 S rRNA gene sequencing showed distinct microbiota profiles assembling by flowering time treatment. Plant hosts grown with the late-flowering-associated microbiomes showed consequent increases in inflorescence biomass for three A. thaliana genotypes and an increase in total biomass for B. rapa. The increase in biomass was correlated with two- to five-fold enhancement of microbial extracellular enzyme activities associated with nitrogen mineralization in soils. The reproducibility of the flowering phenotype across plant hosts suggests that microbiomes can be selected to modify plant traits and coordinate changes in soil resource pools.
[11]
ZHOU Z J, DU C W, LI T, et al. Biodegradation of a biochar-modifed materborne polyacrylate membrane coating for controlled-release fertilizer and its efects on soil bacterial community profiles[J]. Environmental science and pollution research, 2015, 22(11):8672-8682.
[12]
VAN Z L, KIMBER S, MORRIS S, et al. Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility[J]. Plant and soil, 2010, 327(1):235-246.
[13]
荣飞龙, 蔡正午, 覃莎莎, 等. 酸性稻田添加生物炭对水稻生长发育及产量的影响-基于5年大田试验[J]. 生态学报, 2020, 40(13):4413-4424.
[14]
侯建伟, 邢存芳, 卢志宏, 等. 不同秸秤生物炭对贵州黄壤细菌群落的影响[J]. 中国农业科学, 2018, 51(23):4485-4495.
【目的】表征不同生物炭处理的黄壤细菌群落结构特征和组成差异,探讨引起黄壤细菌群落变化的主控环境因子,为土壤改良和秸秆资源的合理利用提供理论参考。【方法】以玉米、水稻和油菜秸秆500℃炭化得到的生物炭为添加材料,以贵州省地带性黄壤为供试土壤,通过室内培育试验,采用高通量测序(Illumina HiSeq)技术,研究不同生物炭处理的黄壤细菌的菌群变化,并对细菌群落结构与环境因子进行相关性分析和因子分析。试验共设4个处理:对照(CK)、添加玉米秸秆生物炭(BC1)、水稻秸秆生物炭(BC2)和油菜秸秆生物炭(BC3)。【结果】细菌16S rRNA基因拷贝数与土壤全氮、pH和全碳呈极显著或显著正相关关系(r分别为0.78**、0.62*和0.66*)。施用生物炭增加了细菌门和纲水平上的优势菌群的丰富度和多样性,且与pH和C/N具有较强的正相关性。Actinobacteria(放线菌门)、Cyanobacteria(蓝藻菌门)和Chloroflexi(绿弯菌门)为黄壤的3大优势菌门,占所有菌门的68.5%。因子分析显示,土壤全氮、C/N、pH、有效磷和阳离子交换量(CEC)总共解释了80.8%的群落变化,成为黄壤细菌群落结构变化的主控环境因子,贡献率依次为:土壤C/N>pH>有效磷>全氮>CEC。【结论】生物炭改变了细菌的群落构成和化学性质,土壤全氮、C/N、pH、有效磷和CEC对细菌群落结构变化贡献较大,其中全氮和pH是提高土壤细菌群落多样性和丰富度的主控环境因子。
[15]
贺超卉, 董文旭, 胡春胜, 等. 生物质炭对土壤N2O消耗的影响及其微生物影响机理[J]. 中国生态农业学报, 2019, 27(9):1301-1308.
[16]
胡庆兰, 杨凯, 王金贵. 地膜覆盖及不同施肥处理对根际土壤微生物数量和酶活性的影响[J]. 西北农业学报, 2023, 32(3):429-439.
[17]
XU C C, ZHANG K H, ZHU W Y, et al. Large losses of ammonium-nitrogen from a rice ecosystem under elevated CO2[J]. Science advances, 2020, 6(42).
[18]
SANCHEZ P A. Soil fertility and hunger in Africa[J]. Science, 2002, 295:2019-2020.
[19]
XU H J, WANG X H, LI H, et al. Biochar impacts soil microbial community composition and nitrogen cycling in an acidic soil planted with rape[J]. Environ. sci. technol, 2014, 48(16):9391-9399.
[20]
JU X T, XING G X, CHEN X P, et al. Reducing environmental risk by improving N management in intensive Chinese agricultural systems[J]. Proceedings of the national academy sciences USA, 2009, 106:3041-3046.
Excessive N fertilization in intensive agricultural areas of China has resulted in serious environmental problems because of atmospheric, soil, and water enrichment with reactive N of agricultural origin. This study examines grain yields and N loss pathways using a synthetic approach in 2 of the most intensive double-cropping systems in China: waterlogged rice/upland wheat in the Taihu region of east China versus irrigated wheat/rainfed maize on the North China Plain. When compared with knowledge-based optimum N fertilization with 30–60% N savings, we found that current agricultural N practices with 550–600 kg of N per hectare fertilizer annually do not significantly increase crop yields but do lead to about 2 times larger N losses to the environment. The higher N loss rates and lower N retention rates indicate little utilization of residual N by the succeeding crop in rice/wheat systems in comparison with wheat/maize systems. Periodic waterlogging of upland systems caused large N losses by denitrification in the Taihu region. Calcareous soils and concentrated summer rainfall resulted in ammonia volatilization (19% for wheat and 24% for maize) and nitrate leaching being the main N loss pathways in wheat/maize systems. More than 2-fold increases in atmospheric deposition and irrigation water N reflect heavy air and water pollution and these have become important N sources to agricultural ecosystems. A better N balance can be achieved without sacrificing crop yields but significantly reducing environmental risk by adopting optimum N fertilization techniques, controlling the primary N loss pathways, and improving the performance of the agricultural Extension Service.
[21]
周永学, 陈静, 李远, 等. 棉秆还田对咸水滴灌棉田土壤酶活性和细菌群落结构多样性的影响[J]. 环境科学, 2022, 43(4):2192-2203.
[22]
杜思垚, 陈静, 刘佳炜. 基于宏基因组学揭示咸水滴灌对棉田土壤微生物的影响[J]. 环境科学, 2023, 44(2):1104-1119.
[23]
郭慧楠. 生物炭对咸水滴灌棉田土壤的改良效应研究[D]. 石河子: 石河子大学, 2021.
[24]
郭晓雯, 陈静, 鲁晓宇, 等. 生物炭和秸秆还田对微咸水滴灌棉田土壤真菌群落结构多样性的影响[J/OL]. 环境科学:1-16[2022-09-03].
[25]
鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社,1981.
[26]
赵林艳, 官会林, 向萍, 等. 白及根腐病植株根际土壤微生物群落组成特征分析[J]. 生物技术通报, 2022, 38(2):67-74.
分析白及根腐病植株根际土壤微生物群落组成特征,为理解白及根腐病发病机理并针对性开展防治工作提供科学依据。利用Illumina HiSeq高通量测序技术,比较分析白及根腐病与健康植株根际土壤微生物群落结构特征,并对土壤理化性质与酶活性进行定量分析。白及根际土壤中优势真菌为子囊菌门(Ascomycota)和Mortierellomycota,优势细菌为变形菌门(Proteobacteria)和拟杆菌门(Bacteroidetes)。与健康植株相比,发病白及根际土壤Ascomycota相对丰度显著升高,而Mortierellomycota相对丰度显著降低;镰刀菌属(Fusarium)和白粉菌属(Erysiphe)等致病菌群相对丰度显著升高(P&lt;0.05)。多元统计分析表明,健康与发病白及根际土壤细菌与真菌群落存在明显分化。此外,健康植株根际土壤脲酶、蛋白酶与蔗糖酶活性和有效钾含量较高,pH、有机质、铵态氮与硝态氮含量较低。白及根腐病的发生可能与土壤致病菌相对丰度升高、微生物群落结构变化、酶活性降低、养分失衡等因素有关。
[27]
张文. 咸水滴灌对棉田土壤N2O排放的影响[D]. 石河子: 石河子大学, 2016.
[28]
马丽娟, 张慧敏, 侯振安, 等. 长期咸水滴灌对土壤氨氧化微生物丰度和群落结构的影响[J]. 农业环境科学学报, 2019, 38(12):2797-2807.
[29]
冯棣, 张俊鹏, 孙池涛, 等. 咸水灌溉棉田保证棉花优质高产的土壤盐度指标控制[J]. 农业工程学报, 2014, 30(24):87-94.
[30]
ZHU M, WANG Q, SUN Y, et al. Effects of oxygenated brackish water on germination and growth characteristics of wheat[J]. Agricultural water management, 2021, 245:106520.
[31]
王罕博, 张栓堂, 焦艳平, 等. 不同氮肥与矿化度水平微咸水喷灌对冬小麦光合特征及产量的影响[J]. 农业资源与环境学报, 2022, 39(1):99-106.
[32]
张文, 周广威, 闵伟, 等. 长期咸水滴灌对棉花产量、土壤理化性质和N2O排放的影响[J]. 农业环境科学学报, 2014, 33(8):1583-1590.
[33]
赵士诚, 魏美艳, 仇少君, 等. 氮肥管理对秸秆还田下土壤氮素供应和冬小麦生长的影响[J]. 中国土壤与肥料, 2017(2):20-25.
[34]
路怡青, 朱安宁, 张佳宝, 等. 免耕和秸秆还田对潮土酶活性及微生物量碳氮的影响[J]. 土壤, 2013, 45(5):894-898.
[35]
霍竹, 付晋锋, 王璞. 秸秆还田和氮肥施用对夏玉米氮肥利用率的影响[J]. 土壤, 2005, 37(2):202-204.
[36]
杜思垚, 郭晓雯, 王芳霞, 等. 施用生物炭对咸水滴灌棉田土壤理化性质及酶活性的影响[J]. 西南农业学报, 2022, 35(3):571-580.
[37]
李涛, 何春娥, 葛晓颖, 等. 秸秆还田施氮调节碳氮比对土壤无机氮、酶活性及作物产量的影响[J]. 中国生态农业学报, 2016, 24(12):1633-1642.
[38]
孙媛, 任广鑫, 冯永忠, 等. 秸秆还田和施氮对土壤水热因子及呼吸速率的影响[J]. 西北农林科技大学学报(自然科学版), 2015, 43(3):146-152.
[39]
郭实荣, 胡昆, 邱孺, 等. 生物炭对酸性土壤改良研究进展[J]. 内蒙古林业调查设计, 2017, 40(4):3.
[40]
刘琪, 高志强, 杨珍平, 等. 合理氮肥用量改善冬小麦土壤耕层细菌群落结构及理化性质研究[J]. 中国农学通报, 2022, 38(30):77-84.
通过对黄土高原地区冬小麦在不同施氮水平下土壤细菌群落多样性和理化性质的研究,揭示不同施氮量下土壤细菌群落结构的变化规律,为科学施肥以及土壤生态系统的可持续提供依据。本试验处理为5个不同施氮(N)量0 (N0)、90 (N6)、180 (N12)、240 (N16)、300 (N20) kg/hm<sup>2</sup>,N0处理为对照,采用高通量测序技术,研究不同施氮量对小麦耕层土壤细菌群落结构及理化性质的影响。结果表明:增施氮肥显著增加了土壤水稳性团聚体平均重量直径(MWD) (P&lt;0.05)。随着施氮量的增加,土壤酶活性先升高后下降,在N12处理下土壤酶活性均最高。施氮量对土壤细菌多样性指数有显著影响。不同施氮量处理中土壤细菌16S rRNA基因拷贝数为6.47&times;10<sup>10</sup>~15.18&times;10<sup>10</sup>,在N12处理达到最大值。在门水平上,15个样品获得的类群中变形菌门(Proteobacteria)、放线菌门(Actinobacteria)、酸杆菌门(Acidobacteria)、绿弯菌门(Chloroflexi)和芽单胞菌门(Gemmatimonadetes)为优势类群,其中N12处理显著提高变形菌门、硝化螺旋菌门的相对丰度,且N12处理的酸杆菌门相对丰度最低。主成分分析结果表明N12处理与其他处理距离较远。冗余分析表明,土壤理化性质及土壤酶与细菌群落密切相关。因此,施氮量显著影响土壤细菌群落结构及理化性质,施氮量(N)为180 kg/hm<sup>2</sup>时有利于提高细菌群落多样性及改善土壤结构。
[41]
戴雅婷, 闫志坚, 解继红, 等. 基于高通量测序的两种植被恢复类型根际土壤细菌多样性研究[J]. 土壤学报, 2017, 54(3):735-748.
[42]
李明, 毕江涛, 王静. 宁夏不同地区盐碱化土壤细菌群落多样性分布特征及其影响因子[J]. 生态学报, 2020, 40(4):1316-1330.
[43]
郭晓雯, 杜思垚, 王芳霞, 等. 长期咸水滴灌对棉田土壤细菌和真菌群落结构的影响[J]. 新疆农业科学, 2022, 59(12):2909-2923.
【目的】 研究长期咸水灌溉对棉田土壤理化性质、细菌和真菌群落结构多样性的影响。【方法】 设3个灌溉水盐度处理为0.35、4.61和8.04 dS/m,分别代表淡水、微咸水、咸水3种灌溉水质,采用高通量测序法测定土壤中细菌和真菌群落结构多样性。【结果】 与淡水灌溉相比,微咸水和咸水灌溉显著提高了土壤盐分和土壤容重,但降低了土壤pH、有机质和全氮含量。微咸水和咸水灌溉显著增加细菌OTUs,而咸水灌溉显著降低真菌OTUs。咸水灌溉显著增加细菌Chao1和ACE指数,降低Shannon指数,降低真菌Chao1和ACE 指数,增加Simpson指数。微咸水和咸水灌溉显著降低细菌RB41、H16、Haliangium、硝化螺旋菌属、溶杆菌属、苔藓杆菌属、酸杆菌属和真菌被孢霉属、粉褶菌属、Tetracladium的相对丰度,但显著增加细菌鞘脂单胞菌属、芽单胞菌属、Gaiella、Ilumatobacter、Solirubrobacter、Nocardioides和真菌弯孢菌属、球腔菌属的相对丰度。随着灌溉水盐度的增加,细菌群落潜在生物标志物的数量逐渐减少,为4个、2个和1个,真菌群落潜在生物标志物数量在微咸水灌溉最高12个,咸水灌溉最低5个。细菌群落结构的改变与土壤含水量,容重和盐度的变化密切相关,而真菌群落结构的改变仅与土壤含水量显著相关。【结论】 盐分是驱动土壤细菌和真菌群落组成变化的主要因素。土壤细菌和真菌群落通过调节物种组成来适应盐胁迫,不同灌溉水盐度胁迫下土壤细菌和真菌群落会形成显著差异的物种。
[44]
付博阳, 张钧浩, 杨明晓, 等. 追氮时期对强筋小麦根际土壤微生物群落结构的影响[J]. 河北农业大学学报, 2022, 45(3):1-8.
土壤中氮素状况是导致土壤微生物多样性和群落结构变化的主要因素之一,为探究不同追氮时期对小麦根际土壤微生物群落结构的影响,于2017&mdash;2020年进行大田试验,设置了不施氮(N0)、基施氮+拔节期追氮(NE)、基施氮+拔节期追氮+孕穗期追氮(NB)、基施氮+拔节期追氮+抽穗期追氮(NH)、基施氮+拔节期追氮+开花期追氮(NF)5个处理,利用高通量测序技术对小麦根际土壤微生物群落结构变化进行分析。结果表明:与不施氮处理相比,氮肥施用降低了土壤细菌群落&alpha;-多样性,而对真菌群落&alpha;-多样性无明显影响;不同追氮时期各处理间微生物群落Sobs值、Shannon指数、Simpson指数、ACE指数和Chao 1指数均无显著差异。此外,施氮使土壤中绿弯菌门(Chloroflexi)和疣微菌门(Verrucomicrobiota)的相对丰度降低,并提高了土壤中赤霉菌属(Gibberella)、帚枝霉属(Sarocladium)和链格孢属(Alternaria)的相对丰度;与无后期追氮处理相比,开花期追氮处理的疣微菌门的相对丰度显著降低56.9%。此外,追氮时期对小麦根际真菌群落结构无明显影响。因此,追氮时期对强筋小麦土壤微生物多样性没有显著影响,开花期追氮较无后期追氮处理降低了抗生素合成相关的疣微菌门相对丰度。
[45]
SAMAEI M R, MORTAZAVI S B, BAKHSHI B, et al. Isolation genetic identification, and degradation characteristics of n hexadecane degrading bacteria from tropical areas in Iran[J]. Fresenius environmental bulletin, 2013, 22(4):1304-1312.
[46]
LIU J J, SUI Y Y, YU Z H, et al. High throughput sequencing analysis of biogeographical distribution of bacterial communities in the black soils of northeast China[J]. Soil biology and biochemistry, 2014, 70:113-122.
[47]
丁凯, 张毓婷, 张俊红, 等. 不同密度杉木林对林下植被和土壤微生物群落结构的影响[J]. 植物生态学报, 2021, 45(1):62-73.
[48]
ZHENG X, WANG Z, ZHU Y, et al. Effects of a microbial restoration substrate on plant growth and rhizosphere bacterial community in a continuous tomato cropping greenhouse[J]. Scientific reports, 2020, 10:13729.
Continuous cropping of tomato is increasingly practiced in greenhouse cultivation, leading to several soil-related obstacles. In this study, a type of microbial restoration substrate (MRS) was used to amend soils from the re-cropping of tomato for 8 years under greenhouse-cultivated conditions. Two treatments were established: using 1,500 kg hm of MRS to amend soil as treatment (TR), and non-MRS as control (CK). The severity of bacterial wilt (BW), soil properties and rhizobacterial community composition under two different treatments were compared. The application of MRS led to an average 83.75% reduction in the severity of BW, and significantly increased the plant height, root activity and yield. Meanwhile, soil pH, soil organic contents (SOC), total nitrogen (TN) and exchangeable calcium were significantly increased (P < 0.05) by MRS treatment. Illumina-MiSeq sequencing analysis of the 16S rRNA genes revealed that MRS increased the diversity of the tomato rhizobacterial community. The relative abundances of Proteobacteria, Actinobacteria and Bacteroidetes were enhanced, whereas those of Acidobacteria, Chloroflexi, TM7 and Firmicutes were decreased by MRS. The redundancy analysis (RDA) revealed that the severity of tomato BW was negatively correlated with the relative abundances of Actinobacteria, Bacteroidetes and Proteobacteria, but positively correlated with those of Gemmatimonadetes, Firmicutes and Acidobacteria. In addition, the effects of MRS on rhizobacterial metabolic potentials were predicted using a Kyoto Encyclopedia of Genes and Genomes (KEGG) database, implying that MRS could significantly increase nitrogen metabolisms and reduce carbon metabolism. Together, our results indicated that the use of MRS could reestablish soil microbial communities, which was beneficial to plant health compared with the control.
[49]
DING S, ZHOU D, WEI H, et al. Alleviating soil degradation caused by watermelon continuous cropping obstacle: application of urban waste compost[J]. Chemosphere, 2021, 262:128387.
[50]
向君亮, 刘权, 申永瑞, 等. 松嫩草原盐碱土细菌多样性分析[J]. 干旱地区农业研究, 2020, 38(2):62-68.
[51]
杨阳, 章妮, 蒋莉莉, 等. 青海湖高寒草地土壤理化性质及微生物群落特征对模拟降水的响应[J]. 草地学报, 2021, 29(5):1043-1052.
为探究高寒草地生态系统特征对降水变化的响应,本研究以青海湖鸟岛高寒草地生态系统为研究对象,通过设置减少50%降水(NJ)、增加50%降水(NZ)试验处理和对照(NCK)3组不同降水条件,探究土壤理化因子及微生物群落对不同降水梯度的响应特征。研究结果表明:NJ,NZ处理均增加了细菌群落的丰富度降低了其多样性;NJ处理增加真菌群落的丰富度降低了其多样性,NZ处理增加了真菌群落的多样性降低了其丰富度;NJ处理增加了细菌和真菌群落的相对丰度,NZ处理降低了真菌群落相对丰度增加了细菌群落相对丰度;NZ,NJ处理下土壤温湿度及生物量变化差异显著,土壤硝态氮(NO<sub>3</sub><sup>-</sup>-N)、铵态氮(NH<sub>4</sub><sup>+</sup>-N)及全碳含量变化显著;土壤环境因子对土壤微生物群落组成与多样性具有显著影响。综上,土壤理化性质及微生物群落对降水变化的响应明显,真菌对降水处理的响应比细菌更为敏感。
[52]
BERGMANN G T, BATES S T, EILERS K G, et al. The under-recognized dominance of Verrucomicrobia in soil bacterial communities[J]. Soil biology and biochemistry, 2011, 43(7):1450-1465.
[53]
CRITS C A, DIAMOND S, BUTTERFIELD C N, et al. Novel soil bacteria possess diverse genes for secondary metabolite biosynthesis[J]. Nature, 2018, 558(7710):440-454.
[54]
VESELA A B, FRANC M, PELANTOVA H, et al. Hydrolysis of benzonitrile herbicides by soil actinobacteria and metabolite toxicity[J]. Biodegradation, 2010, 21(5):761-770.
The soil actinobacteria Rhodococcus rhodochrous PA-34, Rhodococcus sp. NDB 1165 and Nocardia globerula NHB-2 grown in the presence of isobutyronitrile exhibited nitrilase activities towards benzonitrile (approx. 1.1-1.9 U mg(-1) dry cell weight). The resting cell suspensions eliminated benzonitrile and the benzonitrile analogues chloroxynil (3,5-dichloro-4-hydroxybenzonitrile), bromoxynil (3,5-dibromo-4-hydroxybenzonitrile) and ioxynil (3,5-diiodo-4-hydroxybenzonitrile) (0.5 mM each) from reaction mixtures at 30 degrees C and pH 8.0. The products were isolated and identified as the corresponding substituted benzoic acids. The reaction rates decreased in the order benzonitrile >> chloroxynil > bromoxynil > ioxynil in all strains. Depending on the strain, 92-100, 70-90 and 30-51% of chloroxynil, bromoxynil and ioxynil, respectively, was hydrolyzed after 5 h. After a 20-h incubation, almost full conversion of chloroxynil and bromoxynil was observed in all strains, while only about 60% of the added ioxynil was converted into carboxylic acid. The product of ioxynil was not metabolized any further, and those of the other two herbicides very slowly. None of the nitrilase-producing strains hydrolyzed dichlobenil (2,6-dichlorobenzonitrile). 3,5-Dibromo-4-hydroxybenzoic acid exhibited less inhibitory effect than bromoxynil both on luminescent bacteria and germinating seeds of Lactuca sativa. 3,5-Diiodo-4-hydroxybenzoic acid only exhibited lower toxicity than ioxynil in the latter test.
[55]
张翰林, 白娜玲, 郑宪清, 等. 秸秆还田与施肥方式对稻麦轮作土壤细菌和真菌群落结构与多样性的影响[J]. 中国生态农业学报(中英文), 2021, 29(3):531-539.
Share on Mendeley
PDF(2063 KB)

Collection(s)

Cotton

56

Accesses

0

Citation

Detail

Sections
Recommended

/