Research Progress on Chalkiness Formation Mechanism in Rice

CHENGXinjie, SHIWei, ZHANGMenglong, YUEHongliang, DAIJinying, HULei, ZHUGuoyong

PDF(1214 KB)
PDF(1214 KB)
Chinese Agricultural Science Bulletin ›› 2024, Vol. 40 ›› Issue (2) : 1-7. DOI: 10.11924/j.issn.1000-6850.casb2023-0104

Research Progress on Chalkiness Formation Mechanism in Rice

Author information +
History +

Abstract

Chalkiness is one of the important indexes to evaluate the appearance quality of rice. It is a bad character that seriously affects the grinding, appearance and taste quality of rice, and plays an important role in the market value evaluation of rice. This paper summarized the effects of environmental factors, physiological mechanisms and genetic mechanisms on the formation of chalkiness in rice, and pointed out the difficulties existing in the improvement of chalkiness in rice breeding. Based on the current research results and the development of related technologies, some suggestions for improvement were put forward to provide a certain research basis for the production of high-quality rice.

Key words

rice / chalky / genetic mechanism / formation mechanism / cultivation conditions

Cite this article

Download Citations
CHENG Xinjie , SHI Wei , ZHANG Menglong , YUE Hongliang , DAI Jinying , HU Lei , ZHU Guoyong. Research Progress on Chalkiness Formation Mechanism in Rice. Chinese Agricultural Science Bulletin. 2024, 40(2): 1-7 https://doi.org/10.11924/j.issn.1000-6850.casb2023-0104

0 引言

水稻产量一直是育种研究中的重心之一,随着人民生活水平的日益提高,消费者对稻米品质的要求也不断提高。近年来育种工作者对水稻品质的改良也逐步加以重视,但目前培育的水稻品种品质差强人意。因此,研究水稻品质遗传机理,改良稻米品质,培育出品质优良的水稻新品种或新组合,提高国内稻米的市场竞争力,已成为水稻科研工作者的新任务。稻米品质主要包括加工品质、外观品质、蒸煮食味品质以及营养品质。由于高垩白稻米在加工过程中整精米率低且极易破碎,另外在蒸煮后米饭蓬松中空、蒸煮食味品质较差。因此,垩白能够不仅影响稻米的外观品质,也会影响蒸煮食味品质。
水稻垩白是由于胚乳中淀粉体与蛋白质体松散包装形成的白色不透明部分。根据其在胚乳上或胚乳内的位置不同,可分为心白、背白和腹白[1]。水稻垩白作为一种不良性状,对稻米外观品质以及碾磨、食用和烹调品质均有不利影响[2]。目前主要以垩白度、垩白米率和垩白大小3项指标对稻米外观品质进行评价分级[3]。垩白度是指垩白米的垩白面积总和占试样米粒面积总和的百分比。垩白米率则指的是有垩白的米粒占整个试样米粒总数的百分率。垩白大小是指垩白米粒平方时垩白面积占整个米粒投影面积的比率[4]。国家标准《GB/T 17891—2017优质稻谷》中垩白度作为稻米分级的标准之一[5]。籼稻一级米要求垩白度不高于2.0%,二级米要求垩白度不高于5.0%,三级米要求垩白度不高于8.0%;粳稻一级米要求垩白度不高于2.0%,二级米要求垩白度不高于4.0%,三级米要求垩白度不高于6.0%。因此垩白度越低,稻米外观品质越好。
垩白作为衡量稻米外观品质的重要指标阐明其形成机理与遗传机制具有重要意义。本研究系统综述了水稻垩白形成受生理机制、遗传机制及环境因素的影响,基于这些研究结果,利用现今发展的分子育种等技术,完善对水稻垩白进行改良的育种思路,加速育种进程,为育成具有优良外观及食味品质的水稻新品种提高理论基础。

1 影响水稻形成的内在因素

1.1 生理机制

稻米品质主要是由灌浆过程中碳和氮代谢产生的淀粉与蛋白质储藏的化学组成决定的。其中,灌浆前期是垩白形成的关键时期,这一时期植株氮素营养水平对水稻品质形成影响较大。研究表明,追施氮素穗肥能够加快籽粒灌浆启动,增强灌浆初期强度,提高灌浆速率,延长活跃灌浆持续时间,促进籽粒灌浆,提高干物质积累[6],因此增施穗肥在一定程度上能够降低垩白度、垩白率[7]
目前大部分研究均采用“源”、“库”、“流”学说解释垩白的形成,即叶片(源)进行光合作用生成的有机物质通过输导组织(流)运输到籽粒(库)进而形成胚乳。“源库”关系中,若同化产物供应不足,即“源”小“库”大时,胚乳总贮藏物质填充不充分,容易产生垩白。因此,抽穗期颖花所占叶面积越小,垩白粒率越大;抽穗期及灌浆前期剪叶处理即减“源”会提高垩白粒率,剪颖花处理即减“库”可以减少垩白[8]。隗华军等[9]以长江上游中籼迟熟优质稻组合为试验材料也有类似的发现,“源库比”较低的杂交稻组合中,源库比与垩白粒率呈负相关,而在“源库”比中等的杂交稻组合中没有发现相关性,因此能够通过调整“源库”比例来减少垩白粒率。
同时,水稻同化产物向胚乳运输的“流”也对垩白的产生具有影响。研究表明,低垩白品种的输导组织较高垩白品种更为发达,低垩白品种的籽粒背部维管束中导管数量较多,导管直径与筛管区宽带较大,珠心突起且糊粉层细胞层数较多,厚度较大[10]。灌浆速率也是“源”同化产物生产能力和“流”物质运输能力的综合体现,因此,灌浆速率的动态变化也会影响垩白的产生。

1.2 遗传机理

水稻垩白性状属于数量性状,受到多基因控制[11]。由于水稻胚乳细胞是通过双受精过程中两个极核与精核融合发育形成的,属于三倍体子代,在发育时又受母体基因型影响,因此胚乳垩白性状的遗传表现极为复杂,在研究过程中也存在诸多难点。
由于数量性状极易受环境的影响,很多群体试验是在特定环境下完成,导致遗传图谱中分子标记密度较低[12]。近年来,随着功能基因组学和分子标记的快速发展,水稻垩白性状的QTLs定位也得到了帮助。目前,Gramene(https://archive.gramene.org/)网站上已记录82个与垩白性状相关的QTLs位点,分别分布在水稻的11条染色体上(除第4号染色体以外),其中第8号染色体上存在的QTLs位点数量最多,第10号染色体上QTLs位点数目最少。这些QTLs位点是不同研究团队分别通过F2群体、重组自交系群体、单双倍体群体等不同的遗传群体进行定位得到的。其中,大部分QTLs位点控制水稻垩白率,共有51个,如:晁园等[13]利用川香29B/中国香稻群体定位的qPGWC-2qPGWC-4qPGWC-6-1qPGWC-6-2qPGWC-6-3等位点,还有周立军等[14]利用越光/Kasalath群体定位的qPGWC-1aqPGWC-1bqPGWC-3qPGWC-4等位点;而与垩白大小相关的QTLs位点有13个,如:Li等[15]利用日本晴/Kasalath群体定位了qACE-1qACE-3qACE-5qACE-6等位点;最后,与垩白度有关的QTLs位点则有21个,如:Wan等[16]利用Asominori/IR24群体定位了qDEC-1aqDEC-1bqDEC-2等位点。对这些QTLs位点功能进行分析,垩白性状的主效QTLs位点如表1所示。
表1 水稻垩白性状主效QTLs
QTLs 染色体 区间 亲本 参考文献
qPGWC4.1、qDPGWC4.1 4 RM1359-RM16939 桂朝2号/越光 [17]
qPGWC4.3 4 SSR11-RM17332 桂朝2号/越光 [17]
qPGWC5 5 C734a-RM598 小站95/明恢63 [18]
qPGWC5.2 5 RM13-RM430 桂朝2号/越光 [17]
qPGWC-6 6 RM190 培矮64A/9311 [19]
qPGWC6 6 RM190-RM510 YZD/Ⅱ-32B [20]
qPGWC-7 7 RM234 培矮64A/9311 [19]
qPGWC7.1 7 RM5344-RM6872 桂朝2号/越光 [17]
qPGWC8-1 8 Cp81-RM25 小站95/明恢63 [18]
qPGWC8.1、qDPGWC8.1 8 RM512-RS73 桂朝2号/越光 [17]
qPGWC8-2 8 RM3395-RM7285 小站95/明恢63 [18]
qPGWC-9 9 XNbp67-XNbp132 IR24/Asominori [16]
qPGWC10-1 10 EB10-2-68923-7 小站95/明恢63 [18]
qPGWC10.1 10 RM467-RM271 桂朝2号/越光 [17]
qDEC1a、qPGWC1a 1 id1000223-id1003036 Lemont/Teqing [21]
qDEC2b、qPGWC2c 2 id2009229-RI04856 Lemont/Teqing [21]
qDEC-3 3 C1488-C563 日本晴/Kasalath [19]
qDEC4、qPGWC4 4 id4007289-id4008855 Lemont/Teqing [21]
qDEC-5、qPGWC-5 5 R830-R3166 日本晴/Kasalath [15]
qDEC5a、qPGWC5a 5 RI00399-id5002468 Lemont/Teqing [21]
qDEC5b、qPGWC5b 5 id5005867-RM163 Lemont/Teqing [21]
qDEC-6b、
qPGWC-6b
6 R2147-R2171 日本晴/Kasalath [15]
qDEC-8、qAEC-8、qPGWC-8 8 G1149-R727 IR24/Asominori [16]
qWBR1 1 RM490-RM600 珍汕97/南洋占 [13]
qWBR8 8 RM264-RM477 珍汕97/南洋占 [13]
qWBR12 12 RM101-RM519 珍汕97/南洋占 [13]
qWCR7 7 RM445-RM418 珍汕97/DL208 [13]
qCR5 5 MRG5972-RM480 珍汕97/南洋占 [13]
GW5 5 RMw513 IR24/Asominori [22]
qJPGC-5 5 RM289-RM3437 越光/C602 [23]
qJPGC-8 8 RM447-RM281 越光/C602 [23]
qJPGC-10 10 RM1873-68923-7 越光/C602 [23]
qCHK4.1 4 RM564-RM348 Basmati370/Jaya [24]
qCHK5.1 5 RM289-RM430 Basmati370/Jaya [24]
目前大部分研究人员还停留在垩白性状QTLs的初步定位上面,只有少量的完成了精细定位。如Zhou等[19]利用9311和培矮64S构建了染色体片段代换系群体,检测到两个控制水稻垩白率的QTL位点:qPGWC-6和qPGWC-7,分别位于水稻的第6和第7号染色体,其中qPGWC-7已精细定位至44 kb范围内。Guo等[25]则利用一个籼稻和粳稻的重组自交系衍生的染色体片段代换系群体,检测到一个位于第8号染色体上的控制垩白率的QTL位点,并将其精细定位至140 kb范围内。
由于垩白性状受多种因素的影响,目前已克隆的水稻垩白性状相关基因数量较少,如表2所示,其中利用自然变异所克隆的垩白相关基因仅有Chalk5[26]GW2[27]GL7[28]。Li等[26]则利用两个回交群体,对第5号染色体上的一个微效QTL进行精细定位,区间约为16.8 kb,最后已将其分离克隆,并将该QTLs位点命名为Chalk5
表2 已克隆的水稻垩白相关基因
基因符号 染色体 突变表型 突变体来源 参考文献
Chalk5 5 腹白率降低,影响籽粒垩白形成 自然变异 [26]
GW2 2 出现垩白,粒宽、粒重和产量增加 自然变异 [27]
GL7 7 垩白率降低,粒长增加 自然变异 [28]
SS Ⅲ a 8 出现心白,粒重降低,直链淀粉含量增加 T-DNA插入/Tosl7插入 [29]
OsPPDKB 5 出现心白,粒重下降,蛋白质和脂肪含量增加 T-DNA插入 [30]
GIF1 4 出现垩白,粒重、支链淀粉和直链淀粉含量降低 γ射线诱变 [31-32]
OsRab5a 12 出现心白,谷蛋白积累 60Co诱变 [33]
Flo2 4 出现垩白,粒宽、粒长和粒重降低 化学诱变 [34]
ms-h 9 出现垩白,不育 化学诱变 [35]
这些已克隆的基因对水稻垩白性状的调控机理已有一定的研究。Chalk5编码液泡膜质子转运焦磷酸酶,在胚乳特异表达,可正调控水稻腹白率,影响水稻籽粒垩白的形成和精米率。GW2是一个控制粒宽和粒重的主效QTL位点。GW2编码一个定位于2号染色体上的环型E3泛素连接酶,而GW2功能的缺失导致泛素无法转移到靶蛋白上,因而使得本应降解的底物不能被特异识别,进而激活颖花外壳细胞的分裂,从而增加颖花外壳的宽度,另一方面,间接地,灌浆速率也得到了提高,胚乳的大小随之也得到了增加,最终使得稻谷的宽度、粒重以及产量都得到了增加[27]GL7位于水稻7号染色体上,是一个控制粒长和粒宽的主效QTL。GL7位点上17.1-kb的串联重复,使得GL7表达水平上调,同时下调GL7邻近负调控因子的表达水平,从而使得水稻粒长增长并提高了稻米的外观品质[28]
研究人员还通过T-DNA插入、辐射诱变、化学诱变等技术获得了垩白突变体,进而构建遗传群体,克隆相关基因。利用上述方法已克隆的基因有SS a[29]、OsPPDKB[30]GIF1[31-32]OsRab5a[33]Flo2[34]ms-h[35]。SS Ⅲ a定位于8号染色体,是一个编码淀粉合成酶 Ⅲ a的基因,主要参与直链淀粉B2-B4的延伸[29]OsPPDKB是一个位于5号染色体上,编码丙酮酸磷酸双激酶的基因,主要表达部位为胚乳和糊粉层[30]GIF1则是一个位于4号染色体上的编码细胞壁转化酶的基因,主要参与灌浆早期碳源分配过程[32]OsRab5a位于12号染色体上,编码小分子GTP酶,对胚乳细胞器内膜形成和贮藏蛋白向蛋白体PBII运输具有重要作用[33]Flo2定位于4号染色体,所编码的蛋白具有一个TRR结构域,该基因在籽粒灌浆过程中高表达,预测可能参与蛋白质互作[34]ms-h位于9号染色体上,编码UDP葡萄糖磷酸酶,主要控制水稻的育性,但该基因的突变也会出现垩白表型[35]。这些基因的突变体大都表现为高垩白,在育种工作中利用难度较大,无法直接利用,但有助于科研人员研究垩白形成的遗传机理。
目前也有研究表明,植物激素同样参与了垩白形成相关的分子调控通路。Xie等[36]以‘湘早籼24’及其母本‘湘早籼11’和父本‘湘早籼7’为研究材料,并结合转录组数据分析,发现植物激素含量和多种激素信号在垩白颖果中存在显著差异,特别是ABA和生长素,通过多种转录因子及其下游调控因子的相互作用,调控了水稻垩白的形成。

2 影响水稻形成的外部因素

2.1 环境因素

垩白的形成受多种环境因素的调控[36],如生育期间的温度、光照、水分、土壤类型等。高温与干旱的逆境胁迫下,会强烈促进稻米垩白的形成。灌浆期是籽粒形成的关键时期,有研究表明,水稻授粉至灌浆早期,水稻对高温反应最为敏感,若在这一时期进行短暂的高温处理,会导致稻米灌浆充实不佳,使得垩白明显增加,且增长幅度大于灌浆期进行高温处理[37]。同时,也有研究发现,夜间高温更容易导致垩白的产生,这主要是通过植物激素增加垩白,可以通过外源施用油菜素内酯、维生素C、维生素E和茉莉酸甲酯部分消除高温引起的垩白增加[38]
随着全球温室效应的加剧,育种科研人员逐渐关注大气二氧化碳和臭氧的浓度对稻米品质的影响,并进一步进行研究。研究发现,二氧化碳浓度的提高会增加水稻品种的垩白粒率和垩白度;当大气二氧化碳浓度与冠层温度同时提高时,白粒率和垩白度的提高幅度会加大,二者对于垩白的增加具有累加效应,可以通过增施氮肥与磷肥减少垩白,改善外观品质[39-40]。在臭氧处理下,水稻叶片养分供应受到影响,短链支链淀粉含量增加,同时垩白程度也表现出增加[41]。也有研究表明,在大气二氧化碳和臭氧浓度同时增加时,水稻垩白度受到的影响甚微[42]

2.2 栽培条件因素

栽培学家根据多年田间试验,发现播期、栽插密度、肥料施用等栽培措施对稻米品质均有不同程度的影响[43]
播期影响稻米品质的主要因素是温度,且灌浆期温度对稻米品质的影响极大。研究表明,对于早熟和中熟品种,要适当推迟播期,对于晚熟品种,推迟播期对稻米品质则会产生负面影响,总体而言,适宜的播期有利于改善稻米的外观品质和蒸煮食味品质[44]
栽插密度不仅能够影响产量,对稻米的加工和外观品质也有着较大的影响。适宜的栽插密度可避免田间植株生长郁蔽或稀植栽培下水稻次生分蘖增加导致稻米垩白粒率或垩白度增加,同样有利于提高稻米品质[45]
稻米外观品质受种植方式的影响较大[46],一般情况下,直播稻的外观品质较优,手栽与机插稻米的外观品质优劣则取决于稻米自身品质,而钵苗机插和摆栽稻米的垩白粒率与垩白度均有一定程度的提升,使得外观品质降低。
肥料的施加对于稻米品质有着重要影响。氮肥作为影响稻米品质的重要因素,不同地区,适宜的基蘖肥与穗肥比率,能够降低垩白利率,提高稻米的加工与营养品质[47]。磷、钾肥作为水稻生长的关键肥料,其施加量对于稻米的外观品质也有着较大的影响。黄丽芬等[48]、王伟妮等[49]发现,施用磷肥能显著降低垩白度和垩白大小;但龚金龙等[50]则发现施磷过量会导致垩白粒率提高,而钾肥施用量的增加则会使得垩白度与垩白粒率先下降后上升。由于氮、磷、钾肥间存在互作效应,因此三者配施能够有效降低稻米垩白度[49]。有机肥的施用则能够降低垩白粒率和垩白度[51]

3 水稻垩白的遗传改良

由于田间垩白性状测量较为麻烦,而传统水稻遗传育种中,对于垩白性状只进行表型选择,因此导致垩白性状的改良效率较低,这也是目前优质稻米育种工作中遇到的重点难题。另外,水稻垩白是由多个QTLs控制的数量性状,且环境对垩白性状具有极大的影响[52]。随着现代分子生物学的发展,育种人员对于垩白性状改良的方法也在不断的进步。对于已稳定的QTLs位点可进行进一步的研究,对其进行精细定位、分离和克隆,解析其调控垩白性状的分子机理,这能够为后续低垩白优质稻米遗传育种提供理论基础。也能够利用分子标记辅助选择育种,聚合有利的等位基因位点,同时去除增加垩白性状的等位基因位点,能够更快速的选育出优良品种,降低时间成本。
但传统育种存在耗时长,改良效率低等问题。因此,利用目前已精细定位的QTLs位点和控制垩白的QTLs基因,不仅可以进行分子标记辅助育种或基因聚合。同时还能够使用转基因技术改良水稻的垩白品质。目前垩白性状的相关基因的分离、克隆大部分来源于水稻突变体的研究成果。但这些突变体大都表现出垩白面积大或垩白率高的表型,在大田育种过程中,这些基因的利用难度较大。但这些基因都能作为稻米品质遗传改良的资源,为水稻的品质改良提供指导作用。近年来,随着基因工程的快速发展,可通过RNAi等转基因技术抑制籼稻品种中mRNA的表达,改良籼稻的垩白性状,进而提高稻米品质。例如,由于目前转基因技术在应用中还存在一定争议,这些转基因品种在实际推广种植中较难应用。

4 展望

垩白作为水稻品质的重要性状之一,且对稻米的外观品质、加工品质、蒸煮食味品质和营养品质均具有重要的作用。因而,水稻的垩白品质能够衡量稻米的品质和市场价格。但是垩白性状作为一个多位点控制的数量性状,存在多个QTLs控制垩白性状,同时,环境与栽培因素对垩白性状也具有较大的影响作用,垩白形成涉及的“源库流”理论,在水稻生长过程中,若三者中任何一个发生变化或其关系不稳定,都能导致稻米产生或增加垩白。因此,垩白性状的形成是一个复杂的过程,对其进行改良也是极为艰难。
当前快速发展的功能基因组学和生物学分子技术,对于人们研究控制垩白性状的相关基因与QTLs位点的研究具有极大的促进作用。这也加快了垩白性状的相关基因与QTLs位点的挖掘与定位,同时有助于后续垩白性状的遗传机理和分子调控网络的研究。这也为分子标记辅助选择、转基因技术在育种上的应用提供了理论基础。未来的育种工作,可在传统的杂交、回交等育种方式的基础上,辅以全基因组选择育种、分子标记辅助选择育种等手段,实现垩白相关基因和QTLs位点的转移与聚合,能够缩短水稻垩白性状改良的时间,更为高效地实现育种目标。另外,还可运用基因工程等手段,将远缘物种的优良基因转入现有水稻品种中,快速定点改良水稻的垩白性状。但转基因技术在育种工作中仍旧存在争议,在实际育种工作中还需进一步探讨。

References

[1]
LIN Z M, ZHANG X C, WANG Z X, et al. Metabolomic analysis of pathways related to rice grain chalkiness by a notched-belly mutant with high occurrence of white-belly grains[J]. BMC plant biology, 2017, 17:39.
Background: Grain chalkiness is a highly undesirable trait deleterious to rice appearance and milling quality. The physiological and molecular foundation of chalkiness formation is still partially understood, because of the complex interactions between multiple genes and growing environments.Results: We report the untargeted metabolomic analysis of grains from a notched-belly mutant (DY1102) with high percentage of white-belly, which predominantly occurs in the bottom part proximal to the embryo. Metabolites in developing grains were profiled on the composite platforms of UPLC/MS/MS and GC/MS. Sampling times were 5, 10, 15, and 20 days after anthesis, the critical time points for chalkiness formation. A total of 214 metabolites were identified, covering most of the central metabolic pathways and partial secondary pathways including amino acids, carbohydrates, lipids, cofactors, peptides, nucleotides, phytohormones, and secondary metabolites. A comparison of the bottom chalky part and the upper translucent part of developing grains of DY1102 resulted in 180 metabolites related to chalkiness formation.Conclusions: Generally, in comparison to the translucent upper part, the chalky endosperm had lower levels of metabolites regarding carbon and nitrogen metabolism for synthesis of storage starch and protein, which was accompanied by perturbation of pathways participating in scavenging of reactive oxygen species, osmorugulation, cell wall synthesis, and mineral ion homeostasis. Based on these results, metabolic mechanism of chalkiness formation is discussed, with the role of embryo highlighted.
[2]
FITZGERALD M A, McCouch S R, HALL R D. Not just a grain of rice: the quest for quality[J]. Trends in plant science, 2009, 14(3):133-139.
A better understanding of the factors that contribute to the overall grain quality of rice (Oryza sativa) will lay the foundation for developing new breeding and selection strategies for combining high quality, with high yield. This is necessary to meet the growing global demand for high quality rice while offering producing countries additional opportunities for generating higher export revenues. Several recent developments in genetics, genomics, metabolomics and phenomics are enhancing our understanding of the pathways that determine several quality traits. New research strategies, as well as access to the draft of the rice genome, will not only advance our understanding of the molecular mechanisms that lead to quality rice but will also pave the way for efficient and targeted grain improvement.
[3]
廖斌, 张桂莲. 水稻垩白的研究进展[J]. 作物研究, 2015, 29(1):77-83.
[4]
刘霞, 付艳苹, 朱晔荣, 等. 水稻垩白形成的生理和遗传机制[J]. 植物生理学通讯, 2007(3):569-574.
[5]
国家粮食局标准质量中心, 湖北国家粮食质量监测中心, 黑龙江国家粮食质量监测中心, 等. GB/T 17891—2017,优质稻谷[S]. 北京: 中国标准出版社, 2017.
[6]
习敏, 许有尊, 孙雪原, 等. 氮素穗肥对水稻垩白籽粒灌浆影响及与加工品质的关系[J]. 中国农业科技导报, 2021, 23(9):144-151.
[7]
田华, 段美洋, 黎国喜, 等. 水稻品质形成的研究概况[J]. 安徽农学通报(上半月刊), 2009, 15(9):116-117.
[8]
周立军. 水稻垩白粒率和千粒重QTL分析与qPGWC-7的精细定位[D]. 南京: 南京农业大学, 2008.
[9]
隗华军, 王楚桃. 杂交水稻库源关系和穗型对稻米垩白粒率的影响[J]. 南方农业(园林花卉版), 2012(5):61-63.
[10]
杨福, 聂小兰, 宋慧, 等. 2个不同垩白度粳稻胚乳养分输导组织解剖结构的比较研究[J]. 吉林农业大学学报, 2005(1):11-14,18.
[11]
PENG B, WANG L Q, FAN C C, et al. Comparative mapping of chalkiness components in rice using five populations across two environments[J]. BMC genetics, 2014, 15(1):1-14.
The greater epithelial ridge (GER) is a developmental structure in the maturation of the organ of Corti. Situated near the inner hair cells of neonatal mice, the GER undergoes a wave of apoptosis after postnatal day 8 (P8). We evaluated the GER from P8 to P12 in transgenic mice that carry the R75W + mutation, a dominant-negative mutation of human gap junction protein, beta 2, 26 kDa (GJB2) (also known as connexin 26 or CX26). Cx26 facilitate intercellular communication within the mammalian auditory organ.
[12]
彭波, 孙艳芳, 李琪瑞, 等. 水稻垩白性状的遗传研究进展[J]. 信阳师范学院学报(自然科学版), 2016, 29(2):304-312.
[13]
晁园, 冯付春, 高冠军, 等. 利用重组自交系群体定位水稻品质相关性状的QTL[J]. 华中农业大学学报, 2012, 31(4):397-403.
[14]
周立军, 江玲, 刘喜, 等. 水稻千粒重和垩白粒率的QTL 及其互作分析[J]. 作物学报, 2009, 35(2):255-261.
产量因子千粒重和稻米品质指标垩白粒率密切相关。本研究以越光/Kasalath//越光BIL群体为材料,分析千粒重和垩白粒率的相关性、QTL、上位性互作及其环境的互作效应。相关分析表明,群体千粒重和垩白粒率在2005年和2006年均呈极显著正相关,相关系数分别为0.42和0.35 (P<0.001)。2年共检测到千粒重QTL 11个,其中5个在2年重复检测到,5个具有环境互作效应;千粒重上位性互作8对,7对与环境存在互作。垩白粒率QTL 6个,3个具有环境互作效应;上位性互作9对,其中4对具有上位性环境互作效应。比较分析发现3个主效QTL同时控制千粒重和垩白粒率的表现,千粒重和垩白粒率的增效等位基因来自同一亲本;1对上位性互作同时对千粒重和垩白粒率有相同的影响。一些与垩白粒率不相关的千粒重主效QTL,如qTGW-3c、qTGW-4a和qTGW-6b,可为育种所利用。对利用QTL定位结果进行千粒重和垩白粒率分子辅助选择育种进行了探讨。
[15]
LI Z F, WAN J M, XIA J F, et al. Mapping quantitative trait loci underlying appearance quality of rice grains[J]. Acta genetica sinica, 2003, 30(3):251-259.
[16]
WAN X Y, WAN J M, WENG J F, et al. Stability of QTLs for rice grain dimension and endosperm chalkiness characteristics across eight envi-ronments[J]. Theoretical & applied genetics, 2005, 110(7):1334-1346.
[17]
王林森, 陈亮明, 王沛然, 等. 利用高世代回交群体检测水稻垩白相关性状QTL[J]. 南京农业大学学报, 2016, 39(2):183-190.
[18]
王庆庆. 水稻垩白基因定位及垩白遗传研究[D]. 天津: 天津农学院, 2014.
[19]
ZHOU L J, CHEN L M, JIANG L, et al. Fine mapping of the grain chalkiness QTL qGWC-7 in rice (Oryza sativa L)[J]. Theoretical and applied genetics, 2009, 118(3):581-590.
[20]
刘艳春. 稻米外观品质相关性状QTL分析[D]. 北京: 中国农业科学院, 2012.
[21]
ZHAO X, DAYGON V D, MCNALLY K L, et al. Identification of stable QTLs causing chalk in rice grains in nine environments[J]. Theoretical and applied genetics, 2016, 129(1):141-153.
A novel QTL cluster for chalkiness on Chr04 was identified using single environment analysis and joint mapping across 9 environments in Asia and South American. QTL NILs showed that each had a significant effect on chalk. Chalk in rice grains leads to a significant loss in the proportion of marketable grains in a harvested crop, leading to a significant financial loss to rice farmers and traders. To identify the genetic basis of chalkiness, two sets of recombinant inbred lines (RILs) derived from reciprocal crosses between Lemont and Teqing were used to find stable QTLs for chalkiness. The RILs were grown in seven locations in Asia and Latin American and in two controlled environments in phytotrons. A total of 32 (21) and 46 (22) QTLs for DEC and PGWC, most of them explaining more than 10% of phenotypic variation, were detected based on single environment analysis in T/L (L/T) population, respectively. Seven (2) and 7 (3) QTLs for DEC and PGWC were identified in the T/L (L/T) population using joined analysis across all environments, respectively. Six major QTLs clusters were found on five chromosomes: 1, 2, 4, 5 and 11. The biggest cluster at id4007289-RM252 on Chr04 was a novelty, including 16 and 4 QTLs detected by single environment analysis and joint mapping across all environments, respectively. The detected digenic epistatic QTLs explained up to 13% of phenotypic variation, suggesting that epistasis play an important role in the genetic control of chalkiness in rice. QTL NILs showed that each QTL cluster had a significant effect on chalk. These chromosomal regions could be targets for MAS, fine mapping and map-based cloning for low chalkiness breeding.
[22]
翁建峰. 水稻粒宽和粒重QTL GW5的精细定位及其功能初步分析[D]. 南京: 南京农业大学, 2009.
[23]
LIU X, WANG Y, WANG S W. QTL analysis of percentage of gains with chalkiness in japonica rice (Oryza sativa L)[J]. Genetics and molecular research, 2012, 11(1):717-724.
[24]
VEMIREDDY L R, NOOR S, SATYAVATHI V V, et al. Discovery and mapping of genomic regions governing economically important traits of Basmati rice[J]. Bmc plant biology, 2015, 15(1):207-215.
[25]
GUO T, LIU X L, WAN X Y, et al. ldentification of a stable quantitative trait locus for percentage grains with white chalkiness in ric (Oryza sativa L)[J]. Journal of integrative plant biology, 2011, 53(8):598-607.
[26]
LI Y, FAN C, XING Y, et al. Chalk5 encodes a vacuolar H(+)-translocating pyrophosphatase influencing grain chalkiness in rice[J]. Nature genetics, 2014, 46(4):398-404.
Grain chalkiness is a highly undesirable quality trait in the marketing and consumption of rice grain. However, the molecular basis of this trait is poorly understood. Here we show that a major quantitative trait locus (QTL), Chalk5, influences grain chalkiness, which also affects head rice yield and many other quality traits. Chalk5 encodes a vacuolar H(+)-translocating pyrophosphatase (V-PPase) with inorganic pyrophosphate (PPi) hydrolysis and H(+)-translocation activity. Elevated expression of Chalk5 increases the chalkiness of the endosperm, putatively by disturbing the pH homeostasis of the endomembrane trafficking system in developing seeds, which affects the biogenesis of protein bodies and is coupled with a great increase in small vesicle-like structures, thus forming air spaces among endosperm storage substances and resulting in chalky grain. Our results indicate that two consensus nucleotide polymorphisms in the Chalk5 promoter in rice varieties might partly account for the differences in Chalk5 mRNA levels that contribute to natural variation in grain chalkiness.
[27]
HAO J Q, WANG D K, WU Y B, et al. The GW2-WG1-OsbZIP47 pathway controls grain size and weight in rice[J]. Molecular plant, 2021, 14(8):1266-1280.
Regulation of seed size is a key strategy for improving crop yield, and is also a basic biological question, but how plants determine their seed size remains elusive. Here we report that the GW2-WG1-OsbZIP47 regulatory module controls grain width and weight in rice. WG1, which encodes a glutaredoxin protein, promotes grain growth by increasing cell proliferation. WG1 interacts with the transcription factor OsbZIP47 and represses its transcriptional activity by associating with the transcriptional co-repressor ASP1, indicating that WG1 may act as adaptor protein to recruit the transcriptional co-repressor. OsbZIP47 restricts grain growth by decreasing cell proliferation. Further results reveal that the E3 ubiquitin ligase GW2 ubiquitinates WG1 and targets it for degradation. Genetic analyses support that GW2, WG1 and OsbZIP47 function in a common pathway to control grain growth. Thus, our findings reveal a genetic and molecular framework for the GW2-WG1-OsbZIP47 regulatory module-mediated control of grain size and weight, opening new perspectives for using this regulatory pathway for improvement of seed size and weight in crops.Copyright © 2021 The Author. Published by Elsevier Inc. All rights reserved.
[28]
WANG Y X, XIONG G S, HU J, et al. Copy number variation at the GL7 locus contributes to grain size diversity in rice[J]. Nature genetics, 2015, 47(8):944-948.
Copy number variants (CNVs) are associated with changes in gene expression levels and contribute to various adaptive traits. Here we show that a CNV at the Grain Length on Chromosome 7 (GL7) locus contributes to grain size diversity in rice (Oryza sativa L.). GL7 encodes a protein homologous to Arabidopsis thaliana LONGIFOLIA proteins, which regulate longitudinal cell elongation. Tandem duplication of a 17.1-kb segment at the GL7 locus leads to upregulation of GL7 and downregulation of its nearby negative regulator, resulting in an increase in grain length and improvement of grain appearance quality. Sequence analysis indicates that allelic variants of GL7 and its negative regulator are associated with grain size diversity and that the CNV at the GL7 locus was selected for and used in breeding. Our work suggests that pyramiding beneficial alleles of GL7 and other yield- and quality-related genes may improve the breeding of elite rice varieties.
[29]
FUJITA N, YOSHIDA M, KONDO T, et al. Characterization of SSⅢ adeficient mutants of rice: the function of SS Ⅲ a and pleiotropic effects by SS Ⅲa deficiency in the endosperm[J]. Plant physiol, 2007, 144:2009-2023.
Starch synthase IIIa (SSIIIa)-deficient rice (Oryza sativa) mutants were generated using retrotransposon insertion and chemical mutagenesis. The lowest migrating SS activity bands on glycogen-containing native polyacrylamide gel, which were identified to be those for SSIIIa, were completely absent in these mutants, indicating that they are SSIIIa null mutants. The amylopectin B2 to B4 chains with degree of polymerization (DP) ≥ 30 and the M  r of amylopectin in the mutant were reduced to about 60% and 70% of the wild-type values, respectively, suggesting that SSIIIa plays an important part in the elongation of amylopectin B2 to B4 chains. Chains with DP 6 to 9 and DP 16 to 19 decreased while chains with DP 10 to 15 and DP 20 to 25 increased in the mutants amylopectin. These changes in the SSIIIa mutants are almost opposite images of those of SSI-deficient rice mutant and were caused by 1.3- to 1.7-fold increase of the amount of SSI in the mutants endosperm. Furthermore, the amylose content and the extralong chains (DP ≥ 500) of amylopectin were increased by 1.3- and 12-fold, respectively. These changes in the composition in the mutants starch were caused by 1.4- to 1.7-fold increase in amounts of granules-bound starch synthase (GBSSI). The starch granules of the mutants were smaller with round shape, and were less crystalline. Thus, deficiency in SSIIIa, the second major SS isozyme in developing rice endosperm affected the structure of amylopectin, amylase content, and physicochemical properties of starch granules in two ways: directly by the SSIIIa deficiency itself and indirectly by the enhancement of both SSI and GBSSI gene transcripts.
[30]
KANG H G, PARK S H, MATSUOKA M, et al. White-core endosperm floury sndosperm-4 in rice is generated by knockout mutations in the C4-type pyruvate orthophosphate dikinase gene (OsPPDKB)[J]. Plant journal, 2005, 42:901-911.
[31]
WANG E T, WANG J J, ZHU X G, et al. Control of rice grain-filling and yield by a gene with a potential signature of domestication[J]. Nat genet, 2008, 40:1370-1374.
Grain-filling, an important trait that contributes greatly to grain weight, is regulated by quantitative trait loci and is associated with crop domestication syndrome. However, the genes and underlying molecular mechanisms controlling crop grain-filling remain elusive. Here we report the isolation and functional analysis of the rice GIF1 (GRAIN INCOMPLETE FILLING 1) gene that encodes a cell-wall invertase required for carbon partitioning during early grain-filling. The cultivated GIF1 gene shows a restricted expression pattern during grain-filling compared to the wild rice allele, probably a result of accumulated mutations in the gene's regulatory sequence through domestication. Fine mapping with introgression lines revealed that the wild rice GIF1 is responsible for grain weight reduction. Ectopic expression of the cultivated GIF1 gene with the 35S or rice Waxy promoter resulted in smaller grains, whereas overexpression of GIF1 driven by its native promoter increased grain production. These findings, together with the domestication signature that we identified by comparing nucleotide diversity of the GIF1 loci between cultivated and wild rice, strongly suggest that GIF1 is a potential domestication gene and that such a domestication-selected gene can be used for further crop improvement.
[32]
WANG E T, XU X, ZHANG L, et al. Duplication and independent selection of cell-wall invertase genes GIF1 and OsCIN1 during rice evolution and domestication[J]. BMC evolutionary biology, 2010, 10:108.
Background: Various evolutionary models have been proposed to interpret the fate of paralogous duplicates, which provides substrates on which evolution selection could act. In particular, domestication, as a special selection, has played important role in crop cultivation with divergence of many genes controlling important agronomic traits. Recent studies have indicated that a pair of duplicate genes was often sub-functionalized from their ancestral functions held by the parental genes. We previously demonstrated that the rice cell-wall invertase (CWI) gene GIF1 that plays an important role in the grain-filling process was most likely subjected to domestication selection in the promoter region. Here, we report that GIF1 and another CWI gene OsCIN1 constitute a pair of duplicate genes with differentiated expression and function through independent selection. Results: Through synteny analysis, we show that GIF1 and another cell-wall invertase gene OsCIN1 were paralogues derived from a segmental duplication originated during genome duplication of grasses. Results based on analyses of population genetics and gene phylogenetic tree of 25 cultivars and 25 wild rice sequences demonstrated that OsCIN1 was also artificially selected during rice domestication with a fixed mutation in the coding region, in contrast to GIF1 that was selected in the promoter region. GIF1 and OsCIN1 have evolved into different expression patterns and probable different kinetics parameters of enzymatic activity with the latter displaying less enzymatic activity. Overexpression of GIF1 and OsCIN1 also resulted in different phenotypes, suggesting that OsCIN1 might regulate other unrecognized biological process. Conclusion: How gene duplication and divergence contribute to genetic novelty and morphological adaptation has been an interesting issue to geneticists and biologists. Our discovery that the duplicated pair of GIF1 and OsCIN1 has experiencedsub-functionalization implies that selection could act independently on each duplicate towards different functional specificity, which provides a vivid example for evolution of genetic novelties in a model crop. Our results also further support the established hypothesis that gene duplication with sub-functionalization could be one solution for genetic adaptive conflict.
[33]
WANG Y H, REN Y L, LIU X, et al. OsRab5a regulates endomembrane organization and storage protein trafficking in rice endosperm cells[J]. Plant journal, 2010, 64:812-824.
[34]
SHE K C, KUSANO H, KOIZUMI K, et al. A novel factor FLOURY ENDOSPERM2 is involved in regulation of rice grain size and starch quality[J]. Plant cell, 2010, 22:3280-3294.
Rice (Oryza sativa) endosperm accumulates a massive amount of storage starch and storage proteins during seed development. However, little is known about the regulatory system involved in the production of storage substances. The rice flo2 mutation resulted in reduced grain size and starch quality. Map-based cloning identified FLOURY ENDOSPERM2 (FLO2), a member of a novel gene family conserved in plants, as the gene responsible for the rice flo2 mutation. FLO2 harbors a tetratricopeptide repeat motif, considered to mediate a protein–protein interactions. FLO2 was abundantly expressed in developing seeds coincident with production of storage starch and protein, as well as in leaves, while abundant expression of its homologs was observed only in leaves. The flo2 mutation decreased expression of genes involved in production of storage starch and storage proteins in the endosperm. Differences between cultivars in their responsiveness of FLO2 expression during high-temperature stress indicated that FLO2 may be involved in heat tolerance during seed development. Overexpression of FLO2 enlarged the size of grains significantly. These results suggest that FLO2 plays a pivotal regulatory role in rice grain size and starch quality by affecting storage substance accumulation in the endosperm.
[35]
WOO M O, HAM T H, JI H S, et al. Inactive of UGPase1 gene causes genic male sterility and endosperm chalkiness in rice (Oryza sativa L.)[J]. Plant journal, 2008, 54:190-204.
[36]
XIE Q, XU J, HUANG K, et al. Dynamic formation and transcriptional regulation mediated by phytohormones during chalkiness formation in rice[J]. BMC plant biology, 2021, 21(1):308.
Rice (Oryza sativa L.) Chalkiness, the opaque part in the kernel endosperm formed by loosely piled starch and protein bodies. Chalkiness is a complex quantitative trait regulated by multiple genes and various environmental factors. Phytohormones play important roles in the regulation of chalkiness formation but the underlying molecular mechanism is still unclear at present.In this research, Xiangzaoxian24 (X24, pure line of indica rice with high-chalkiness) and its origin parents Xiangzaoxian11 (X11, female parent, pure line of indica rice with high-chalkiness) and Xiangzaoxian7 (X7, male parent, pure line of indica rice with low-chalkiness) were used as materials. The phenotype, physiological and biochemical traits combined with transcriptome analysis were conducted to illustrate the dynamic process and transcriptional regulation of rice chalkiness formation. Impressively, phytohormonal contents and multiple phytohormonal signals were significantly different in chalky caryopsis, suggesting the involvement of phytohormones, particularly ABA and auxin, in the regulation of rice chalkiness formation, through the interaction of multiple transcription factors and their downstream regulators.These results indicated that chalkiness formation is a dynamic process associated with multiple genes, forming a complex regulatory network in which phytohormones play important roles. These results provided informative clues for illustrating the regulatory mechanisms of chalkiness formation in rice.
[37]
CHEN J, TANG L, SHI P, et al. Effects of short-term high temperature on grain quality and starch granules of rice (Oryza sativa L.) at post-anthesis stage[J]. Protoplasma, 2017, 254(2):935-943.
[38]
SHAH F, SADDAM H, SHAH S, et al. Responses of rapid viscoanalyzer profile and other rice grain qualities to exogenously applied plant growth regulators under high day and high night temperatures:[J]. Plos one, 2016, 11(7):e0159590.
[39]
董桂春, 王余龙, 黄建晔, 等. 稻米品质性状对开放式空气二氧化碳浓度增高的响应[J]. 应用生态学报, 2004, 15(7):1217-1222.
利用开放式空气CO<sub>2</sub>浓度增高(FACE)系统平台,研究大田栽培条件下粳稻武香粳14号稻米品质性状对CO<sub>2</sub>浓度增高200μmol·mol<sup>-1</sup>的响应.结果表明,FACE处理稻谷的出糙率平均比CK高1.4个百分点,整精米率平均比CK低12.3个百分点,较低的供N水平有利于提高FACE条件下的出糙率,较高的供N水平有利于提高FACE条件下的整精米率;FACE处理的稻米垩白略有增加,垩白粒率平均比CK高11.9个百分点,垩白度平均比CK平均高2.8个百分点,较高的供N和供P水平有利于降低FACE条件下垩白大小、垩白粒率和垩白度;FACE处理稻米糊化温度平均比CK平均高0.52℃,胶稠度有提高的趋势,但对稻米直链淀粉含量影响较小,较高的供N和供P水平有利于降低FACE条件下稻米的直链淀粉含量,较低的供N和较高的供P水平有利于降低FACE条件下稻米胶稠度,较低的供N水平有利于降低FACE条件下稻米糊化温度;FACE处理使稻米蛋白质含量比CK平均低0.6个百分点,较低的供N和供P水平有利于降低FACE条件下稻米蛋白质含量.
[40]
JING L, WANG J, SHENG S, et al. The impact of elevated CO2 and temperature on grain quality of rice grown under open-air field conditions[J]. Journal of the science of food & agriculture, 2015, 96(11):3658-3667.
[41]
JING L, DOMBINOV V, SHEN S, et al. Physiological and genotype-specific factors associated with grain quality changes in rice exposed to high ozone[J]. Environmental pollution, 2016, 210:397-408.
Rising tropospheric ozone concentrations in Asia affect the yield and quality of rice. This study investigated ozone-induced changes in rice grain quality in contrasting rice genotypes, and explored the associated physiological processes during the reproductive growth phase. The ozone sensitive variety Nipponbare and a breeding line (L81) containing two tolerance QTLs in Nipponbare background were exposed to 100 ppb ozone (8 h per day) or control conditions throughout their growth. Ozone affected grain chalkiness and protein concentration and composition. The percentage of chalky grains was significantly increased in Nipponbare but not in L81. Physiological measurements suggested that grain chalkiness was associated with a drop in foliar carbohydrate and nitrogen levels during grain filling, which was less pronounced in the tolerant L81. Grain total protein concentration was significantly increased in the ozone treatment, although the albumin fraction (water soluble protein) decreased. The increase in protein was more pronounced in L81, due to increases in the glutelin fraction in this genotype. Amino acids responded differently to the ozone treatment. Three essential amino acids (leucine, methionine and threonine) showed significant increases, while seven showed significant treatment by genotype interactions, mostly due to more positive responses in L81. The trend of increased grain protein was in contrast to foliar nitrogen levels, which were negatively affected by ozone. A negative correlation between grain protein and foliar nitrogen in ozone stress indicated that higher grain protein cannot be explained by a concentration effect in all tissues due to lower biomass production. Rather, ozone exposure affected the nitrogen distribution, as indicated by altered foliar activity of the enzymes involved in nitrogen metabolism, such as glutamine synthetase and glutamine-2-oxoglutarate aminotransferase. Our results demonstrate differential responses of grain quality to ozone due to the presence of tolerance QTL, and partly explain the underlying physiological processes. Copyright © 2016 Elsevier Ltd. All rights reserved.
[42]
WANG Y, SONG Q, FREI M, et al. Effects of elevated ozone, carbon dioxide, and the combination of both on the grain quality of Chinese hybrid rice[J]. Environmental pollution, 2014, 189(12):9-17.
[43]
张洪程, 胡雅杰, 杨建昌, 等. 中国特色水稻栽培学发展与展望[J]. 中国农业科学, 2021, 54(7):1301-1321.
水稻是我国最重要口粮作物,在保障国家粮食安全中具有举足轻重的作用。当前,我国水稻生产正面临由传统小规模生产向机械化、智能化、标准化和集约化的现代规模化生产方式转变,在此重要历史节点,回顾总结70年中国特色水稻栽培学发展历程与科技成就,对探索未来水稻栽培科技发展方向具有重要意义。70年来,我国水稻栽培科技界抓住水稻不同主产区大面积生产问题与关键技术瓶颈,深入开展水稻生长发育和产量、品质形成规律及其与环境条件、栽培措施等方面关系的研究,探索水稻生育调控、栽培优化决策和栽培管理等新途径与新方法,取得了一大批在生产上大面积应用的重要栽培技术和理论,形成了一批重大栽培科技成果。笔者着重从叶龄模式栽培理论及技术、群体质量及其调控、精确定量栽培、轻简化栽培、机械化栽培、超高产栽培、优质栽培、绿色栽培、逆境栽培和区域化栽培等十个方面阐述了改革开放以来中国水稻栽培取得的主要科技成就,并指出了未来中国水稻栽培创新发展的重要方向:一是加强水稻绿色优质丰产协调规律与广适性栽培技术研究;二是加强多元专用稻优质栽培研究;三是加强水稻超高产提质协同规律及实用栽培研究;四是加强直播稻、再生稻稳定丰产优质机械化栽培研究;五是加强水稻智能化、无人化栽培研究。
[44]
姚义, 霍中洋, 张洪程, 等. 播期对麦茬直播粳稻产量及品质的影响[J]. 中国农业科学, 2011, 44(15):3098-3107.
&nbsp;【目的】探讨麦后直播条件下播期对不同熟期类型水稻品种产量及品质的影响。【方法】以3种熟期类型的6个水稻品种为材料,通过分期播种试验,对不同播期条件下直播稻产量形成及品质性状进行分析。【结果】随着播期的推迟,3种熟期类型水稻品种产量均显著下降,且变化程度不一;产量的下降主要在于每穗颖花数和结实率的降低,穗数和千粒重变化不大。不同播期条件下直播稻的主要品质性状的变化规律在品种类型间有所异同:随着播期的推迟,产生相同效应的是外观品质和蒸煮与食味品质,但变化趋势不一,外观品质均呈变优的趋势,蒸煮与食味品质则呈变劣的趋势;产生不同效应的是加工品质和营养品质,推迟播期使中熟中粳和迟熟中粳类型品种的加工品质变优而营养品质变劣,早熟晚粳类型品种的加工品质变劣而营养品质变优。【结论】直播稻在前茬腾茬时间允许的条件下尽可能早播易取得高产,且可以改善稻米的蒸煮与食味品质,但降低了外观品质,播期对加工品质和营养品质的影响因品种熟期类型而异。
[45]
谢成林, 唐建鹏, 姚义, 等. 栽培措施对稻米品质影响的研究进展[J]. 中国稻米, 2017, 23(6):13-18,22.
随着生活水平的提高,稻米品质愈发受到人们的关注。本文概述了本世纪以来,我国农业科技工作者在栽培措施对稻米品质影响方面的一些研究成果,并从播期、密度、种植方式、肥料运筹、水分管理和种养模式等方面总结了优质稻米生产技术,供生产者参考。
[46]
杨波, 徐大勇, 张洪程. 直播、机插与手栽水稻生长发育、产量及稻米品质比较研究[J]. 扬州大学学报(农业与生命科学版), 2012, 33(2):39-44.
[47]
万靓军, 张洪程, 霍中洋, 等. 氮肥运筹对超级杂交粳稻产量、品质及氮素利用率的影响[J]. 作物学报, 2007, 33(2):175-182.
[48]
黄丽芬, 陶晓婷, 高威, 等. 江苏沿海地区减磷对机插常规粳稻产量形成及品质的影响[J]. 中国水稻科学, 2014, 28(6):632-638.
[49]
王伟妮, 鲁剑巍, 何予卿, 等. 氮、磷、钾肥对水稻产量、品质及养分吸收利用的影响[J]. 中国水稻科学, 2011, 25(6):645-653.
[50]
龚金龙, 张洪程, 李杰, 等. 施磷量对超级稻南粳44产量和品质的影响[J]. 中国水稻科学, 2011, 25(4):447-451.
以超级稻南粳44为材料,研究施磷量对水稻产量和品质的影响。结果表明,大田基施磷肥(P2O5)&nbsp; 0.0~225.0&nbsp; kg/hm2,单位面积穗数、每穗粒数随着施磷量的增加而降低,结实率、千粒重则先升后降。各品质指标值与施磷量的相关均未达到显著水平,但施磷能提高糙米率、整精米率、垩白面积、垩白度,降低峰值黏度、热浆黏度、崩解值、冷胶黏度和回复值,而精米率、垩白米率、蛋白质含量、直链淀粉含量、起始糊化温度、消减值和到达峰值黏度时间对磷素的反应不明显。施磷主要是增加垩白面积从而增加垩白度,对垩白面积、垩白度、消减值影响较大,而糙米率、到达峰值黏度时间和起始糊化温度基本不受影响。综合产量和品质性状,水稻生产中应适量施磷(在土壤营养中等或偏上土壤上施85.7 kg/hm2为宜),过量施用不仅低产低效,还会加重生态污染。
[51]
黄丽芬, 张蓉, 余俊, 等. 有机栽培对杂交粳稻产量和品质的影响[J]. 作物学报, 2015, 41(3):458-467.
[52]
CHEN Y, WANG M, OUWERKERKPBF. Molecular and environmental factors determining grain quality in rice[J]. Food energy security, 2012, 1(2):111-132.
Share on Mendeley
PDF(1214 KB)

Collection(s)

Rice

831

Accesses

0

Citation

Detail

Sections
Recommended

/