
Effects of Bio-organic Fertilizer on Photosynthetic Characteristics, Dry Matter Accumulation and Transportation and Yield Formation of Continuous Cropping Sugar Beet Under Reduced Chemical Fertilizer Application
GUO Xiaoxia, TIAN Lu, JIAN Caiyuan, HUANG Chunyan, LI Zhi, ZHANG Peng, HAN Kang, LIANG Yahui, KONG Dejuan, SU Wenbin
Effects of Bio-organic Fertilizer on Photosynthetic Characteristics, Dry Matter Accumulation and Transportation and Yield Formation of Continuous Cropping Sugar Beet Under Reduced Chemical Fertilizer Application
To study the regulatory effects of bio-organic fertilizer on continuous cropping sugar beet under reduced chemical fertilizer and to screen out the best amount of bio organic fertilizer, conventional fertilization (900 kg/hm2 chemical fertilizer) was used as the control (CK), five bio-organic fertilizer treatments were set up (BOF1: 1500 kg/hm2, BOF2: 3000 kg/hm2, BOF3: 4500 kg/hm2, BOF4: 6000 kg/hm2 and BOF5: 7500 kg/hm2), and on the basis of reducing 300 kg/hm2 chemical fertilizer, the effects of bio-organic fertilizer on the photosynthetic characteristics, dry matter accumulation and distribution, yield and quality formation of continuous cropping sugar beet were studied. The results showed that bio-organic fertilizer could promote the photosynthetic characteristics and dry matter accumulation of continuous cropping sugar beet. Compared with the CK, the BOF1 had no significant effects on photosynthetic characteristics and dry matter accumulation of sugar beet during the whole growth periods. Those of BOF2 showed differently among different index and growth periods. While the effects of BOF3, BOF4 and BOF5 all showed significantly except at seedling growth period. The net photosynthetic rate increased by 6.93%-15.23%, 11.50%-21.67% and 5.53%-16.23%, respectively; the intercellular CO2 concentration increased by 10.14%-16.60%, 14.90%-23.06% and 9.90%-16.23%, respectively; the stomatal conductance increased by 15.35%-22.34%, 23.20%-34.94% and 14.61%-22.80%, respectively; the SPAD value increased by 12.93%-24.03%, 24.30%-30.94% and 12.85%-23.14%, respectively; and the total dry matter accumulation amount increased by 14.29%-25.09%, 23.95%-40.09% and 16.24%-27.10%, respectively. Only BOF4 had positive effects on regulating dry matter distribution except at seedling stage. The distribution rate of leaf significantly decreased by 2.25%-10.19%, and the distribution rate of root significantly increased by 2.24%-7.58%. It could effectively promote the transfer of dry matter from ground to the root tubers of sugar beet. The yield of continuous cropping sugar beet increased first and then decreased with the increase of bio-organic fertilizer application amounts. Except treatment BOF1, other biological organic fertilizer treatments all significantly increased the yield compared with CK. The yield of sugar beet in BOF2, BOF3, BOF4 and BOF5 increased by 5.69%, 11.82%, 22.29% and 11.95%, respectively. Only in BOF3 and BOF4, the sugar yield significantly increased by 8.82% and 17.39% compared with the CK. At the same time, through linear fitting, the maximum beet yield and sugar yield appeared around the application amount of 6000 kg/hm2. Above all, on the basis of reducing chemical fertilizer for 300 kg/hm2, the combination with biological organic fertilizer of 6000 kg/hm2 can increase the yield and quality of continuous cropping sugar beet at the same time.
reduction of chemical fertilizer / bio-organic fertilizer / continuous cropping sugar beet / photosynthetic characteristics / dry matter / yield and quality {{custom_keyword}} /
表1 试验地耕层土壤基础养分含量 |
项目 | 有机质/(g/kg) | 全氮/(g/kg) | 全磷/(g/kg) | 全钾/(g/kg) | 碱解氮/(mg/kg) | 速效磷/(mg/kg) | 速效钾/(mg/kg) |
---|---|---|---|---|---|---|---|
含量 | 18.21 | 0.71 | 0.46 | 16.31 | 111.07 | 9.23 | 153.01 |
表2 生物有机肥对连作甜菜光合特性的影响 |
光合指标 | 处理 | 苗期 | 叶丛快速生长期 | 块根及糖分增长期 | 糖分积累期 | 收获期 |
---|---|---|---|---|---|---|
净光合速率/[µmol/(m2·s)] | CK | 12.44±0.5a | 20.67±0.68d | 21.43±0.47e | 18.83±0.46d | 12.79±0.32b |
BOF1 | 12.36±0.58a | 21.07±0.66cd | 22.22±0.75de | 19.42±0.68cd | 13.07±0.44b | |
BOF2 | 12.7±0.45a | 21.91±1.08bcd | 22.59±0.64cd | 20.55±0.9bc | 13.29±0.51b | |
BOF3 | 12.98±0.42a | 22.60±1.07abc | 23.68±0.59bc | 21.69±0.88b | 13.67±0.5ab | |
BOF4 | 13.23±0.56a | 24.29±1.28abc | 25.63±0.63a | 22.91±0.36a | 14.26±0.71a | |
BOF5 | 13.13±0.42a | 22.87±0.76ab | 23.28±0.42bc | 21.45±0.61b | 13.49±0.35ab | |
胞间CO2浓度/[µmol/(m2·s)] | CK | 126.67±7.69a | 221.37±9.75e | 335.91±8.75d | 273.01±5.7d | 219.41±8.16d |
BOF1 | 124.66±8.2a | 231±5.63de | 346.49±11.2cd | 275.32±6.13d | 224.42±4.96cd | |
BOF2 | 129.74±7.51a | 241.43±7.74cd | 356.13±7.87bc | 287.59±7.01c | 236.26±9.02bc | |
BOF3 | 134.3±9.7a | 258.13±9.54ab | 369.81±7.81b | 300.7±6.56b | 243.73±10.08ab | |
BOF4 | 136.47±4.78a | 272.43±7.92a | 385.97±7.65a | 315.07±7.35a | 257.38±8.94a | |
BOF5 | 135.53±9.56a | 257.3±7.06b | 366.27±6.6b | 300.03±6.28bc | 242.59±6.59b | |
蒸腾速率/[mmol/(m2·s)] | CK | 3.84±0.31a | 4.94±0.28d | 6.54±0.28d | 5.71±0.21d | 4.33±0.26d |
BOF1 | 4.02±0.77a | 5.1±0.13cd | 6.98±0.36cd | 6.22±0.34cd | 4.93±0.45cd | |
BOF2 | 4.07±0.22a | 5.29±0.31bc | 7.34±0.13c | 6.72±0.24c | 5.22±0.34bc | |
BOF3 | 4.16±0.5a | 5.55±0.2ab | 8.11±0.33b | 7.35±0.37b | 5.77±0.29ab | |
BOF4 | 4.33±0.47a | 5.82±0.15a | 8.79±0.11a | 7.89±0.32a | 6.17±0.5a | |
BOF5 | 4.19±0.57a | 5.45±0.25abc | 8.15±0.29b | 7.32±0.21b | 5.89±0.5ab | |
气孔导度/[mmol/(m2·s)] | CK | 0.16±0.01b | 0.47±0.01d | 1.34±0.03e | 0.99±0.02d | 0.6±0.02c |
BOF1 | 0.17±0.01ab | 0.48±0.03cd | 1.42±0.04de | 1.04±0.04d | 0.64±0.03c | |
BOF2 | 0.17±0.02ab | 0.52±0.03c | 1.47±0.04cd | 1.13±0.03c | 0.69±0.02b | |
BOF3 | 0.17±0.01ab | 0.57±0.01b | 1.55±0.01bc | 1.19±0.04bc | 0.73±0.04b | |
BOF4 | 0.18±0.01a | 0.63±0.01a | 1.66±0.1a | 1.29±0.04a | 0.81±0.04a | |
BOF5 | 0.17±0.01ab | 0.58±0.02b | 1.54±0bc | 1.17±0.04bc | 0.73±0.02b | |
SPAD值 | CK | 31.2±1.67a | 35.57±1.35d | 40.47±2.82c | 34.43±1.67d | 26.5±1.73d |
BOF1 | 30.47±1.36a | 37.23±1.82cd | 41.77±1.97c | 35.9±1.85cd | 28.17±2.24c | |
BOF2 | 32.87±1.57a | 40.3±2.5bc | 43.17±0.85bc | 38.17±2.5bc | 30.6±1.18bc | |
BOF3 | 33.43±1.67a | 42.63±1.56ab | 45.7±0.82b | 41.03±1.55bc | 32.87±1.22ab | |
BOF4 | 34.07±1.69a | 45.83±1.72a | 50.3±1.9a | 44.7±1.31a | 34.7±1.85a | |
BOF5 | 33.6±1.85a | 42.7±1.71ab | 45.67±0.71b | 40.3±1.91b | 32.63±0.84ab |
表3 生物有机肥对连作甜菜单株干物质积累总量的影响 |
处理 | 苗期 | 叶丛快速生长期 | 块根及糖分增长期 | 糖分积累期 | 收获期 |
---|---|---|---|---|---|
CK | 2.62±0.19a | 37.44±2.68c | 130.7±5.87d | 133.49±4.5d | 199.04±5.22d |
BOF1 | 2.68±0.21a | 37.84±2.11c | 135.45±4.31d | 141.49±6.41d | 208.45±7.51cd |
BOF2 | 2.77±0.18a | 40.18±2.22bc | 143.8±5.77c | 155.36±8.94c | 223.76±9.42bc |
BOF3 | 2.85±0.18a | 42.79±1.51ab | 151.12±4bc | 166.99±8.04bc | 231.84±13.86b |
BOF4 | 2.95±0.32a | 46.41±1.48ab | 163.42±4.13a | 186.9±4.93a | 257.36±9.07a |
BOF5 | 2.87±0.18a | 43.52±2.02ab | 152.39±1.89b | 169.67±6.71b | 234.13±12.59b |
[1] |
陈艺文, 李用财, 余凌羿, 等. 中国三大主产区甜菜糖业发展分析[J]. 中国糖料, 2017, 39(4):74-76.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[2] |
郭晓霞, 田露, 樊福义, 等. 微生态制剂对重茬甜菜根腐病防控及产质量水平提升的影响[J]. 西北农业学报, 2019, 28(9):1460-1468.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[3] |
李进, 顾绘, 殷琳毅. 江苏南通大棚草莓连作障碍成因分析[J]. 中国果树, 2018(1):48-50.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[4] |
夏梅梅, 钟宛凌, 欧阳里山, 等. 1989—2018年国内作物连作障碍研究现状——基于CNKI的文献计量学分析和科学知识图谱研究[J]. 农学学报, 2021, 11(3):46-54.
为介绍国内作物连作障碍的研究进展,基于1989—2018年中国知网数据库(CNKI)中连作障碍相关发文情况,通过文献计量学方法分析文献的年代、期刊、机构、基金、作者、研究对象和主题分布等基础信息,并采用CiteSpace V软件对关键词进行科学知识图谱研究。结果表明,连作障碍文献数量总体上与年度变化呈明显正相关关系;受各类资金资助的文献数为2678篇,占总文献量的42.28%,其中受国家自然科学基金资助的文献发表最多;该研究领域文章的刊载主要涉及农业类杂志,研究机构主要涉及农林类高等院校及科研院所;文献作者毛志泉、许艳丽、韩晓增等在该领域研究成果较多;研究对象主要集中在粮食作物、蔬菜作物、水果(树)、经济作物和药用植物5类;该领域研究热点主要围绕土壤微生物、土壤酶、土传病害、化感自毒作用等方面展开,初步形成了以韩丽梅、许艳丽为中心的研究群体。作物连作障碍研究逐渐受到重视,越来越多学者致力于此方向研究,使该领域科研水平和学术影响力得到了较大提升。但作物连作障碍研究中仍有许多领域具有较大空间,基于土壤微生态环境变化视角,探索连作障碍的防治机制,或许将成为未来研究的主要方向。
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[5] |
吴凤芝, 赵凤艳, 刘元英. 设施蔬菜连作障碍原因综合分析与防治措施[J]. 东北农业大学学报, 2000, 31(3):241-247.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[6] |
曲成闯, 陈效民, 张志龙, 等. 生物有机肥提高设施土壤生产力减缓黄瓜连作障碍的机制[J]. 植物营养与肥料学报, 2019, 25(5):814-823.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[7] |
孙薇, 钱勋, 付青霞, 等. 生物有机肥对秦巴山区核桃园土壤微生物群落和酶活性的影响[J]. 植物营养与肥料学报, 2013, 19(5):1224-1233.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[8] |
胡可, 李华兴, 卢维盛, 等. 生物有机肥对土壤微生物活性的影响[J]. 中国生态农业学报, 2010, 18(2):303-306.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[9] |
谢荣淳, 黄丽娜, 雷菲, 等. 化肥减量配施生物有机肥对香蕉产量及品质的影响[J]. 中国南方果树, 2021, 50(2):58-62.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[10] |
赵军, 窦玉青, 宋付朋, 等. 有机和无机烟草专用肥配合施用对烟草生产效益和肥料氮素利用率的影响[J]. 植物营养与肥料学报, 2014, 20(3):613-619.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[11] |
徐淑霞, 张世敏, 尤晓颜, 等. 黄孢原毛平革菌对黄瓜连作土壤酚酸物质的降解[J]. 应用生态学报, 2008, 19(11):2480-2484.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[12] |
罗静静, 刘小龙, 李克梅, 等. 几种微生物菌剂对连作棉田枯黄萎病的防病效应[J]. 西北农业学报, 2015, 24(7):136-143.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[13] |
王玫, 尹承苗, 孙萌萌, 等. 黄腐酸微生物菌剂对连作平邑甜茶光合特性的影响[J]. 植物生理学报, 2019, 55(1):99-106.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[14] |
吴光磊, 郭立月, 崔正勇, 等. 氮肥运筹对晚播冬小麦氮素和干物质积累与转运的影响[J]. 生态学报, 2012, 32(16):5128-5137.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[15] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[16] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[17] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[18] |
王成, 吕剑, 李静, 等. 不同生物有机肥用量对韭菜产量、品质及养分利用的影响[J]. 中国土壤与肥料, 2019(6):204-211.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[19] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[20] |
王亚雄, 常少刚, 王锐, 等. 不同有机肥对宁夏枸杞生长、产量及品质的影响[J]. 中国土壤与肥料, 2019(5):91-95.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[21] |
杜少平, 马忠明, 薛亮. 不同有机肥对砂田西瓜产量、品质和养分吸收的影响[J]. 应用生态学报, 2019, 30(4):1269-1277.
探讨不同有机肥对西北砂田西瓜生长、产量、品质和养分吸收利用的影响,为砂田西瓜合理施肥、优质高效生产提供理论依据.本试验以单施化肥为对照,在氮、磷、钾等养分条件下,设置了牛粪、鸡粪、羊粪、猪粪4个处理,测定了西瓜不同生育时期生长指标、产量、品质及养分吸收积累量.结果表明: 施用牛粪、鸡粪和猪粪有机肥较单施化肥可促进西瓜营养生长和氮、钾养分的运转,显著提高西瓜产量和养分的吸收积累量,其中西瓜产量较化肥处理分别显著提高了27.4%、31.6%和30.2%,氮素积累量分别提高了26.3%、39.8%和47.4%,磷素积累量分别提高了49.3%、48.3%和55.9%,钾素积累量分别提高了35.8%、41.6%和51.9%.猪粪处理的西瓜品质最优,中心、边缘可溶性固形物含量较化肥处理分别显著提高了5.5%和11.6%,Vc含量提高了19.9%.羊粪处理各指标与化肥处理间差异不显著,甚至略低于化肥处理.综上,砂田西瓜种植应优先选用猪粪和鸡粪有机肥,避免或减少施用羊粪有机肥.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[22] |
薛勇, 吴平江, 夏叶, 等. 不同种类有机肥对娃娃菜生理特性及产量的影响[J]. 中国瓜菜, 2019, 32(10):60-63.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[23] |
周建斌. 作物营养从有机肥到化肥的变化与反思[J]. 植物营养与肥料学报, 2017, 23(6):1686-1693.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[24] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[25] |
范黎. 菌根真菌促进植物生长的光合生理研究[J]. 微生物学通报, 2015, 42(5):968-976.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[26] |
龚杰, 江其朋, 谭茜. 不同用量复合微生物菌剂基质拌菌对烟草生长及青枯病发生的影响[J]. 植物医生, 2020, 33(3):50-54.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[27] |
张树衡, 丁德东, 何静, 等. 两种生物肥料配施对再植花椒生长及光合特性的影响[J]. 西北农业学报, 2021, 30(9):1355-1364.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[28] |
陈洁, 周亮, 张文华. 气孔开闭机理的实验探究[J]. 中学生物学, 2012, 28(9):39-40.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[29] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[30] |
卢合全, 唐薇, 罗振, 等. 商品有机肥替代部分化肥对连作棉田土壤养分、棉花生长发育及产量的影响[J]. 作物学报, 2021, 47(12):2511-2521.
研究商品有机肥替代部分化肥对连作棉田土壤养分变化、棉花生长发育及产量的影响, 探索有机肥替代部分化肥实现化肥减量增效的可行性, 为黄河流域棉区棉花科学施肥提供理论依据和技术支撑。2016—2018年在山东省临清市安排3年定位施肥试验, 以陆地棉(Gossypium hirsutium L.)品种K836为试验材料, 随机区组设计, 设置不施肥(NF)、化肥常规用量(NPK)、商品有机肥用量(COF)、化肥常规用量与商品有机肥用量配施(NPK+COF)、化肥常规用量的70%与商品有机肥用量配施(0.70NPK+COF)共5个处理。结果表明, 0.70NPK+COF处理较NF显著提高棉田土壤肥力、棉花干物质积累量、SPAD值和叶面积指数, 协调改善了棉花产量构成, 籽棉产量逐年增加9.63%、26.18%和59.96%。0.70NPK+COF处理较NPK提高棉田土壤有机质含量, 而土壤碱解氮、有效磷、速效钾含量、棉花干物质积累量、SPAD值、叶面积指数、籽棉产量和产量构成因素均无显著差异, 3年内0.70NPK+COF与NPK处理的籽棉产量均保持在一个相对稳定的产量水平(3976~4105 kg hm<sup>-2</sup>)。NPK+COF处理较NPK和0.70NPK+COF均增加土壤养分含量, 提高棉花叶绿素SPAD值和净光合速率, 但没有显著提高棉花产量。据此, 商品有机肥替代部分化肥(0.70NPK+COF)能够培肥连作棉田地力、促进棉花生长发育和持续高产稳产, 是一种节肥增效环保的施肥技术模式。
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[31] |
薛超, 黄启为, 凌宁, 等. 连作土壤微生物区系分析、调控及高通量研究方法[J]. 土壤学报, 2011, 48(3):612-618.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[32] |
王嘉男, 谢军红, 李玲玲, 等. 有机肥替代化肥对陇中旱农区玉米光合特性及产量的影响[J]. 甘肃农业大学学报, 2020, 55(4):29-36.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[33] |
谢鹏虓, 黄鹏, 安丹军. 配施生物有机肥及化肥减量对玉米间作豌豆土壤微生物及产量的影响[J]. 甘肃农业大学报, 2014(6):41-46.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[34] |
柏琼芝, 肖石江, 王晓瑞, 等. 化肥减量配施生物有机肥对秋马铃薯产量的影响[J]. 土壤与作物, 2019, 80(2):158-165.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[35] |
张强, 郭晓霞, 田露, 等. 化肥减施下生物有机肥对甜菜生长发育及产质量的影响[J]. 中国糖料, 2021, 43(2):55-60.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[36] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[37] |
孙艳艳, 蒋桂英, 刘建国, 等. 加工番茄连作对农田土壤酶活性及微生物区系的影响[J]. 生态学报, 2010, 30(13):3599-3607.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[38] |
郭晓霞, 苏文斌, 樊福义, 等. 施氮量对膜下滴灌甜菜生长速率及氮肥利用效率的影响[J]. 干旱地区农业研究, 2016, 34(3):39-45.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[39] |
黄春燕, 苏文斌, 张少英, 等. 施钾量对膜下滴灌甜菜光合性能以及对产量和品质的影响[J]. 作物学报, 2018, 44(10):1520-1529.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |