
Investigation on Soil Fertility of Paddy Field in Yingde City
LINBaigui, ZHONGWenliang, HUANGJichuan
Investigation on Soil Fertility of Paddy Field in Yingde City
To investigate and analyze the soil fertility status of paddy fields in Yingde, so as to provide reference for scientific fertilization management of rice production. In the main rice planting areas of Yingde, the soil samples for test were collected from surface of paddy rice field for 4 consecutive years, the soil pH, organic matter, total nitrogen, available nitrogen, available phosphorus and available potassium were detected, and the current status and variation characteristics of soil fertility in paddy fields of Yingde were analyzed. The results showed that the changes of soil pH, total nitrogen, available nitrogen and available potassium in Yingde paddy field were not significant during the 4 years, but the available phosphorus increased significantly. The paddy soil in Yingde City was generally acidic. The average pH values of the east, middle, northwest and southwest of Yingde City were pH 5.29, 5.94, 6.01 and 6.41, respectively. Soil was acidic in the east of Yingde City, and weakly acidic in other areas. In terms of soil organic matter, grade 3 soil accounted for 28.3%-39.4%, grade 4 soil accounted for 35.6%-41.7%, which was at a middle level. And organic matter in middle and northwest regions of Yingde City were significantly higher than those in east and southwest regions in this respect. The proportion of total nitrogen and available nitrogen in grade 1-3 soil was 70.0%-81.1% and 79.4%-87.2%, respectively, indicating that nitrogen was abundant in soil. Total nitrogen in the middle and northwest regions were significantly higher than those in east and southwest regions. Available phosphorus in grade 1-3 soil accounted for 73.9%-86.1%, which was at a rich level. The proportion of available phosphorus in eastern region was significantly higher than those in the southwest and northwest regions. Available potassium of grade1-3 soil accounted for 30.6%-37.8%, thus available potassium was generally lacking. In addition, the correlation between soil fertility indicators was significant. It is suggested to improve soil fertility by adding organic fertilizer and returning straw and green manure to the paddy field in Yingde, and appropriately reduce phosphate fertilizer and increase potassium fertilizer to balance soil nutrients. In addition, attention should be paid to the application of acid soil conditioner in east area of Yingde.
Yingde City / pH / organic matter / soil nutrients / fertility {{custom_keyword}} /
[1] |
程国峰, 黄达, 赵冬丽, 等. 河南省潮土区土壤肥力现状分析[J]. 中国农学通报, 2022, 38(27):101-105.
河南省为粮食主产区,潮土分布区域广、面积大,潮土区土壤肥力高低直接影响着粮食生产。基于2018年耕地质量调查,选择柘城县、滑县、睢县3个典型行政县域为研究区域,对潮土区土壤肥力现状进行了分析。研究结果显示:土壤pH、土壤有机质含量、全氮含量、有效磷含量、速效钾含量平均分别为8.2、17.4 g/kg、1.11 g/kg、21.1 mg/kg、141 mg/kg。采用K-均值聚类分析将土壤养分含量由高到低划分为四级;土壤有机质含量分级为>23.6、18.1~23.6、12.2~18.1、<12.2 g/kg,每一分级样本量所占比例分别为8.0%、37.1%、41.3%、13.6%;土壤全氮含量分级为>1.35、1.09~1.35、0.85~1.09、<0.85 g/kg,每一分级样本量所占样本量分别为18.4%、30.7%、35.7%、15.2%。土壤有效磷含量分级为>61.9、36.1~61.9、18.3~36.1、<18.3 mg/kg,每一分级样本量所占比例分别为2.7%、8.8%、32.0%、56.5%。土壤速效钾含量分级为>256、171~256、110~171、<110 mg/kg,每一分级样本量所占比例分别为6.4%、18.9%、38.4%、36.3%。主成分分析结果显示,土壤全氮、有机质、有效磷是影响潮土区土壤肥力变化的主要因子。
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[2] |
武红亮, 王士超, 闫志浩, 等. 近30年我国典型水稻土肥力演变特征[J]. 植物营养与肥料学报, 2018, 24(6):1416-1424.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[3] |
毛伟, 李文西, 陈明, 等. 近30年扬州市耕地土壤肥力变异特征及其驱动因素分析[J]. 植物营养与肥料学报, 2020, 26(11):1998-2009.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[4] |
任雪菲, 黄道友, 罗尊长, 等. 洞庭湖区农田土壤肥力因子的演变及其原因分析[J]. 土壤通报, 2014, 45(3):691-696.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[5] |
黄继川, 彭智平, 徐培智, 等. 广东省水稻土有机质和氮、磷、钾肥力调查[J]. 广东农业科学, 2014, 41(6):70-73.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[6] |
鲍士旦. 土壤农化分析. 3版[M]. 北京: 中国农业出版社, 2000.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[7] |
广东省土壤普查办公室. 广东土壤[M]. 北京: 科学出版社, 1993.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[8] |
袁志发, 周静芋. 试验设计与分析[M]. 北京: 高等教育出版社, 2000.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[9] |
陈伟, 魏虹, 李昌晓, 等. 三峡库区不同土地利用方式土壤肥力变化——以汝溪河流域为例[J]. 西南师范大学学报(自然科学版), 2013, 38(1):96-100.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[10] |
唐琨, 朱伟文, 周文新, 等. 土壤pH对植物生长发育影响的研究进展[J]. 作物研究, 2013, 27(2):207-212.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[11] |
尹逊霄, 华珞, 张振贤, 等. 土壤中磷素的有效性及其循环转化机制研究[J]. 首都师范大学学报(自然科学版), 2005, 26(3):95-101.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[12] |
于天一, 孙秀山, 石程仁, 等. 土壤酸化危害及防治技术研究进展[J]. 生态学杂志, 2014, 33(11):3137-3143.
目前我国酸化土壤呈现面积大、分布广及酸化程度高等特点,酸化土壤的结构差、肥力低且有毒重金属含量高,影响作物生长发育,严重威胁粮食安全及农田可持续发展。本文就土壤酸化的成因及危害、耐酸作物品种筛选及耐酸机制等方面进行了论述,对土壤酸化防治措施提出了相应的对策,指出今后的研究重点应放在以下几方面:(1)进一步研究脱硫技术和好氧堆肥技术,从而减少氮、硫氧化物的排放;(2)研制并推广低成本、肥效持久以及环境危害小的中性(碱性)肥料,提高氮肥利用率,减少由过量施用生理酸性肥料带来的酸化危害;(3)加强作物根际致酸性研究,筛选“耐酸性强、致酸性低”的作物品种;(4)研究豆科作物与禾本科作物轮作模式及轮作年限对土壤酸度的影响,探索豆科作物与禾本科作物间作轻简化栽培模式,以缓解由单作豆科作物带来的土壤酸化问题。
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[13] |
李春越, 王益,
【目的】了解pH对土壤微生物量的影响,揭示磷素转化机理及提高磷素利用率的生物调控措施。【方法】以英国洛桑研究所长期定位试验pH梯度土壤为研究对象,研究不同pH下,耕地土壤微生物碳磷比(C/P)及磷素有效性的差异。【结果】微生物C/P比与土壤pH、全碳、无机磷含量以及磷素回收率之间具有一定的相关性。磷素回收率和微生物C/P比随pH的增加而增加,土壤全碳、全磷、C/N和微生物量磷则随pH的增加而减少。土壤呼吸强度随培养时间延长呈线性增加。微生物量碳和ATP呈现出明显的正相关,相关系数高达0.912(n=16)。【结论】pH对于磷素的利用起着重要的作用。微生物C/P比可以作为土壤磷素利用的一个重要指示指标,微生物量C/P比的大小反映土壤微生物对土壤磷有效性的调节作用。
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[14] |
黄运湘, 曾希柏, 张杨珠, 等. 湖南省丘岗茶园土壤的酸化特征及其对土壤肥力的影响[J]. 土壤通报, 2010, 41(3):633-638.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[15] |
周飞, 许熔熔, 陈余平, 等. 余姚市耕地土壤养分状况及其变化特征研究[J]. 江西农业学报, 2022, 34(7):117-121.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[16] |
张述强, 姚志龙. 旱地果园土壤有机质对氮素含量的影响[J]. 中国农学通报, 2021, 37(17):45-50.
旨在研究果园土壤有机质与土壤氮素养分的相关性与空间分布变化,为果园土壤的可持续利用提供依据。对庆阳苹果主产区30个果园土壤有机质含量和土壤氮素养分进行农化分析。结果表明:0~20 cm果园土壤有机质与全氮含量的相关关系为y=0.055x+0.140,相关系数R<sup>2</sup>=0.940,土壤有机质与碱解氮含量的相关关系为y=3.061x+26.65,相关系数R<sup>2</sup>=0.414,土壤全氮与碱解氮含量的相关关系为y=55.28x+18.83,相关系数R<sup>2</sup>=0.441;20~40 cm果园土壤的有机质与全氮含量的相关关系为y=0.045x+0.250,相关系数R<sup>2</sup>=0.721,土壤的有机质与土壤碱解氮含量的相关关系为y=2.237x+23.84,相关系数R<sup>2</sup>=0.158,土壤的全氮与碱解氮含量的相关关系为y=57.47x+5.141,相关系数R<sup>2</sup>=0.298。
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[17] |
彭智平, 赵秉强, 黄继川. 广东省作物专用复混肥料农艺配方[M]. 北京: 中国农业出版社, 2014.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[18] |
都江雪, 柳开楼, 黄晶, 等. 中国稻田土壤有效磷时空演变特征及其对磷平衡的响应[J]. 土壤学报, 2021, 58(2):476-486.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[19] |
林碧珊, 苏少青. 广东省稻田土壤肥力演变状况及分析[J]. 安徽农学通报, 2008, 14(11):70-71.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[20] |
程金, 张思文, 黄文卿, 等. 福建省耕地土壤pH空间分布及影响因素分析[J]. 中国农业大学学报, 2022, 27(12):90-101.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[21] |
符昌武, 王祖富, 宋家庆, 等. 不同海拔高度植烟土壤磷素特征及其与土壤养分的关系[J]. 中国农技推广, 2020, 36(11):78-81.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[22] |
张超博, 邱洁雅, 王敏, 等. 桂北柑橘园土壤化学性状研究[J]. 土壤, 2020, 52(6):1187-1195.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
Collection(s)
/
〈 |
|
〉 |