Investigation of Rhizosphere Fungi in Pinus tabuliformis Forests in Beijing ---- Taking Songshan National Nature Reserve as An Example

GAOBingying, WANGPing, WANGYanchun, DINGXi, ZHANGJingwei, LIUShuying

PDF(1458 KB)
PDF(1458 KB)
Chinese Agricultural Science Bulletin ›› 2024, Vol. 40 ›› Issue (2) : 8-15. DOI: 10.11924/j.issn.1000-6850.casb2022-1052

Investigation of Rhizosphere Fungi in Pinus tabuliformis Forests in Beijing ---- Taking Songshan National Nature Reserve as An Example

Author information +
History +

Abstract

Fungi play an important role in decomposing organic matter, preserving soil fertility and promoting nutrient cycling in soil ecosystem. This study aims to explore the diversity of rhizosphere fungi in natural and artificial Pinus tabuliformis forests, and provide a scientific basis for the sustainable development of pine forests in Beijing urban and surrounding mountainous areas, as well as the rational development and sustainable utilization of rhizosphere fungi resources. In the study, the number, species and distribution characteristics of fungi in the rhizosphere of natural and artificial P. tabuliformis forests were analyzed by using MMN solid plate culture method and first generation sequencing technology. The results are as follows. (1) The species of rhizosphere fungi in natural P. tabuliformis forests are more abundant than those in artificial forests, and Zygomycota and Ascomycotina are the dominant fungal colonies. (2) Penicillium is the main dominant colony in the rhizosphere of natural P. tabuliformis forests, and Umbelopsis is the main dominant colony in the rhizosphere of artificial forests. (3) Penicillium, Umbelopsis, Mucor, Fusarium and Trichoderma are the dominant fungi in the rhizosphere soil of P. tabuliformis forests. (4) The number of groups and individuals of rhizosphere fungi in natural P. tabuliformis forests is higher than that in artificial forests. This study preliminarily screened and identified two dominant fungi in the rhizosphere of P. tabuliformis forests, and could provide a basis for the protection and rational development of rhizosphere fungi resources.

Key words

Pinus tabuliformis forests / rhizosphere fungi / fruit body / screening and identification / fungal diversity

Cite this article

Download Citations
GAO Bingying , WANG Ping , WANG Yanchun , DING Xi , ZHANG Jingwei , LIU Shuying. Investigation of Rhizosphere Fungi in Pinus tabuliformis Forests in Beijing ---- Taking Songshan National Nature Reserve as An Example. Chinese Agricultural Science Bulletin. 2024, 40(2): 8-15 https://doi.org/10.11924/j.issn.1000-6850.casb2022-1052

References

[1]
李超, 裴顺祥, 张连金, 等. 北京油松人工林竞争指数的适用性评价[J]. 浙江农林大学学报, 2019, 36(6):1115-1124.
[2]
常芳, 张金全. 延庆县荒山造林树种调查与分析[J]. 中国园艺文摘, 2010, 26(6):166-168.
[3]
祁金玉, 邓继峰, 尹大川, 等. 外生菌根菌对油松幼苗抗氧化酶活性及根系构型的影响[J]. 生态学报, 2019, 39(8):2826-2832.
[4]
周平, 李吉跃, 杨庆理. 固体水对苗木作用效应的研究[J]. 北京林业大学学报, 2002, 24(1):16-21.
[5]
梁佳宁, 刘洋, 姜博鑫. 基于森林资源调查的北京西山油松人工林生物量动态变化研究[J]. 林业科技, 2020, 45(1):38-41.
[6]
BI G, MU Z, GUO X. Distribution of ectomycorrhizal fungi under several chief forest types in alpine coniferous regions of North Western Yunnan[J]. Scientia silvae sinicae, 1989, 25(1):33-39.
[7]
王斐, 琚淑明. 松科树种菌根的研究进展[J]. 贵州农业科学, 2010, 38(10):92-96.
[8]
张学利, 杨树军, 张百习, 等. 不同林龄樟子松根际与非根际土壤的对比[J]. 福建林学院学报, 2005, 25(1):80-84.
[9]
BLACKWELL M. Terrestrial Life-Fungal from the Start[J]. Science, 2000, 289(5486):1884-1885.
[10]
施河丽, 向必坤, 谭军, 等. 烟草青枯病发病烟株根际土壤细菌群落分析[J]. 中国烟草学报, 2018, 24(5):57-65.
[11]
张福锁, 申建波. 根际微生态系统理论框架的初步构建[J]. 中国农业科技导报, 1999(4):15-20.
[12]
赵娜, 鲁绍伟, 李少宁, 等. 北京松山自然保护区典型植物群落物种多样性研究[J]. 西北植物学报, 2018, 38(11):2120-2128.
[13]
员子晶, 姚庆智, 闫伟. 褐环乳牛肝菌对油松根际土壤可培养微生物数量影响的研究[J]. 内蒙古农业大学学报(自然科学版), 2011, 32(2):175-178.
[14]
肖巍. 北方地区针叶树外生菌根真菌样本的采集与保存[J]. 防护林科技, 2019, 2(7):65-66.
[15]
张好强, 余红霞, 唐明. 油松根际外生菌根真菌龟裂秃马勃的分离鉴定及培养[J]. 西北植物学报, 2016, 36(2):419-425.
[16]
HATAKEYAMA T, OHMASA M. Mycelial growth of strains of the genera Suillus and Boletinus in media with a wide range of concentrations of carbon and nitrogen sources[J]. Mycoscience, 2004, 45(3):169-176.
[17]
于富强, 纪大干, 刘培贵. 云南松外生菌根真菌分离培养研究[J]. 植物研究, 2003, 1(1):66-71.
[18]
陈青君, 程继鸿, 杜园园, 等. 北京地区大型真菌资源初步调查[J]. 北京农学院学报, 2006, 21(2):39-43.
[19]
陈青君, 王守现, 张国庆, 等. 北京林地野生大型真菌资源调查报告[C]//见:第十届全国食用菌学术研讨会.第十届全国食用菌学术研讨会论文汇编. 北京: 中国菌物学会, 2014:8-13.
[20]
董爱荣, 吕国忠, 吴庆禹, 等. 小兴安岭凉水自然保护区森林土壤真菌的多样性[J]. 东北林业大学学报, 2004, 32(1):8-10.
[21]
赵文静, 周明, 孙海, 等. 额尔古纳国家级自然保护区内4种林型土壤真菌的多样性[J]. 东北林业大学学报, 2014, 42(5):105-109.
[22]
尚蓓. 松山林区木腐菌与两类主要林型土壤真菌的研究[D]. 北京: 北京林业大学, 2008:46-59.
[23]
MICHAELA U, JAROSLAVS, PETR B. Composition of fungal and bacterial Communities in forest litter and soil is largely determined by dominant trees[J]. Soil biology and biochemistry, 2015, 84(2):53- 64.
[24]
刘建军, 陈海滨, 田呈明, 等. 秦岭火地塘林区主要树种根际微生态系统土壤性状研究[J]. 土壤侵蚀与水土保持学报, 1998, 4(3):53-57.
[25]
胡尔查, 王晓江, 刘永宏, 等. 乌拉山自然保护区主要森林群落物种多样性与群落结构研究[J]. 内蒙古林业科技, 2010, 36(2):1-5.
[26]
米锋, 谭曾豪迪, 顾艳红, 等. 我国森林生态安全评价及其差异化分析[J]. 林业科学, 2015, 51(7):107-115.
[27]
任洪江, 杨新兵, 李淑春. 森林生态系统健康经营内涵的思考[J]. 防护林科技, 2013, 2(3):43-44.
[28]
王炳煌. 典型林区不同森林类型群落特征及生物多样性分析——以三明市清流县矿山环评调查项目为例[J]. 武夷学院学报, 2021, 40(12):30-35.
[29]
刘贵森, 倪薇, 王燚, 等. 对人工林非森林问题的探讨[J]. 林业勘查设计, 2011, 3(2):11-13.
[30]
许红妮. 油松生长习性与病虫害防治技术[J]. 新农业, 2022(15):40-41.
[31]
顾美英, 徐万里, 张志东, 等. 施用棉秆炭连作棉花根际土壤真菌多样性与土壤理化性质及黄萎病的相关性[J]. 新疆农业科学, 2018, 55(9):1698-1709.
【目的】研究施用棉秆炭,连作棉花根际土壤真菌群落多样性与土壤理化性质及黄萎病病害的关系,为棉秆的合理利用和防治棉花连作障碍提供科学依据和理论指导。【方法】以棉秆移除(NPK)和棉秆还田(NPKS)为对照,采用常规分析和454高通量测序技术,研究棉秆移除基础上施用常量棉秆炭(22.50 t/hm<sup>2</sup>,NPKB1)和增量棉秆炭(45.00 t/hm<sup>2</sup>,NPKB2)条件下,新疆棉花根际土壤真菌群落多样性、理化性质和黄萎病病害发生的相关性。【结果】施用棉秆炭连作棉花根际土壤真菌多样性和理化性质有显著相关性。经过2年的2%棉秆炭的施用显著降低了真菌多样性。真菌NPKS和NPKB2处理OTU丰度分别显著降低了15.63%和46.25%(PGibberella、Fusarium和Verticillium等病原真菌数量较NPK处理显著降低。施用棉秆炭显著增加了棉花根际土壤中有机质、速效钾和速效氮的含量,而速效磷的含量则降低;对pH的影响不显著,但显著提高了土壤的电导率。RDA分析中,土壤有机质和速效氮是影响棉花根际土壤真菌群落结构的重要环境因素。与NPK处理和NPKS处理相比,NPKB1处理增加了黄萎病病害发病率和病情指数,NPKB2处理黄萎病病害发病率下降不显著,病情指数分别降低了2.2%和15.0%。Verticillium数量与黄萎病发病率和病情指数呈极显著正相关。施用棉秆炭降低了棉花黄萎病病原菌数量,与NPK处理相比,增量棉秆炭Verticillium数量显著降低了63.83%。与NPK处理和NPKS处理相比,NPKB1处理增加了黄萎病病害发病率和病情指数,NPKB2处理黄萎病病害发病率下降不显著,病情指数分别降低了2.2%和15.0%。【结论】施用棉秆炭降低了连作棉花根际土壤真菌多样性,减少了黄萎病病原菌数量,增加了连作棉花根际土壤养分含量。虽然没有显著降低棉花黄萎病发病率,但有缓解病害发病程度的趋势。
[32]
REN C J, LIU W C, ZHAO F Z, et al. Soil bacterial and fungal diversity and compositions respond differently to forest development[J]. Catena, 2019, 181(9):104071.
[33]
高微微, 康颖, 卢宏, 等. 城市森林不同林型下土壤基本理化特性及土壤真菌多样性[J]. 东北林业大学学报, 2016, 44(3):89-94,100.
[34]
易思荣, 黄娅, 肖波, 等. 濒危植物银杉根际微生物群落动态变化研究[J]. 西南大学学报(自然科学版), 2012, 34(12):48-53.
[35]
刘京伟, 李香真, 姚敏杰. 植物根际微生物群落构建的研究进展[J]. 微生物学报, 2021, 61(2):231-248.
[36]
王瑞虎. 粉红粘帚霉诱导番茄果实对灰霉病的非寄主抗性研究[D]. 哈尔滨: 东北农业大学, 2013:2-10.
[37]
何礼贤. 肺真菌病[C]//见: 中国防痨协会临床委员会、中国防痨协会基础委员会学术研讨会论文集. 北京: 中国防痨杂志期刊社, 2008:9-17.
[38]
宋漳, 王安娇, 黄清平, 等. 园林修剪枝叶人促分解过程腐解真菌的分离[J]. 福建林业科技, 2017, 44(3):50-53,68.
Share on Mendeley
PDF(1458 KB)

163

Accesses

0

Citation

Detail

Sections
Recommended

/