In Vitro Regeneration and Genetic Transformation System of Willow: Research Progress

LIU Yuan, LI Jihong, QIN Guanghua, LIU Cuishuang, SUN Maotong, NIU Muge, WANG Jinnan

PDF(1169 KB)
PDF(1169 KB)
Chinese Agricultural Science Bulletin ›› 2023, Vol. 39 ›› Issue (29) : 32-38. DOI: 10.11924/j.issn.1000-6850.casb2022-0851

In Vitro Regeneration and Genetic Transformation System of Willow: Research Progress

Author information +
History +

Abstract

Willow has attracted attention because of its medicinal value, ecological restoration capacity and potential as a bioenergy source. In recent years, many excellent willow varieties have been cultivated, and candidate genes related to economic traits and stress resistance have been identified in the genome of Salix. A large number of high-quality willow saplings can be obtained by establishing in vitro regeneration and genetic transformation system, and the function of candidate genes can be studied. In order to have a clear understanding of different factors affecting willow regeneration and genetic transformation, this paper reviewed the research progress of willow in vitro regeneration and genetic transformation, including the selection of optimal medium for primary culture, subculture and rooting culture of different Salix species, the selection of optimal medium, hormone and explant type for callus induction, the effects of Agrobacterium type, concentration, infection time, preculture and co-culture time on genetic transformation, and the optimal concentration of kanamycin for selecting efficiency of genetic transformation. At present, there are still some difficulties in the regeneration and genetic transformation of willow callus. In this study, further research directions of willow callus regeneration and genetic transformation were discussed to provide reference for establishing the in vitro regeneration and genetic transformation system of willow, and forming a foundation for the subsequent genetic engineering research and genetic improvement of willow.

Key words

willow / in vitro regeneration / genetic transformation

Cite this article

Download Citations
LIU Yuan , LI Jihong , QIN Guanghua , LIU Cuishuang , SUN Maotong , NIU Muge , WANG Jinnan. In Vitro Regeneration and Genetic Transformation System of Willow: Research Progress. Chinese Agricultural Science Bulletin. 2023, 39(29): 32-38 https://doi.org/10.11924/j.issn.1000-6850.casb2022-0851

0 引言

苹果霉心病是一类发生普遍的病害,由多种弱寄生病原菌侵染引起,目前已报道的真菌涉及20多个属[1]。国内普遍认为链格孢(Alternaria alternata)、镰刀菌(Fusarium spp.)和粉红聚端孢(Trichothecium roseum)是引起苹果霉心病的最主要病原菌[1-2]。病原菌主要在花期侵入,从萼筒进入心室。花期从健康的花朵和果实中可以分离到引起苹果霉心病的病原菌,认为其可能是重要的侵染源[3]。一般认为苹果花期是霉心病的关键侵染时期,但该病在果实生长后期发病居多,常引起在果实采收前提前脱落,成熟果心室霉变、腐烂,甚至有些果到贮藏期才表现出症状,造成大量烂果,给果农带来严重的经济损失。
国内苹果霉心病发生普遍,在多个品种上都能引起发病。在甘肃主栽的‘元帅’系苹果上,采收期发病率达40%~50%,严重的年份可达70%[4]。在‘富士’系苹果上,河南三门峡地区‘富士’苹果霉心病的发病率不同年份略有差异,套袋果发病率高于不套袋果,基本在5%~35%,且呈逐年加重的趋势[5];陕西洛川、白水地区的‘富士’苹果霉心病的发病率为12.4%~27.8%[6]。‘玉华早富’属早熟‘富士’品种,一般在国庆节或中秋节前成熟,较晚熟‘富士’成熟期提前半个月左右。该品种具有浓郁的芳香味,且果型端正、着色艳丽,倍受消费者青睐。但‘玉华早富’因萼片半闭合,在海拔700 m以上极易感染苹果霉心病,生产中霉心病发生相对较重,往往造成采前严重落果,并在贮藏及销售过程中因霉心病的发生,导致果实腐烂。目前在生产上防治苹果霉心病的主要药剂是多抗霉素,但长期连续使用同一种药剂或因农药本身质量问题而加大使用量等,都会导致病害抗药性的迅速发展,并且污染环境[7-8]。且引起苹果霉心病的病原菌种类较多,初侵染来源复杂,增加了防治难度。为此,笔者选择常用高效药剂进行对比,以期选出优于或可替代多抗霉素的药剂来防治苹果霉心病。

1 材料与方法

1.1 试验时间、地点

2021年在河南省三门峡市陕县菜园乡金山农业科技有限公司果园进行田间试验,果园行间间作毛叶苕子。树盘下铺设园艺地布,采用滴灌浇水。

1.2 供试材料

供试品种为‘玉华早富’,‘M26’矮化中间砧木,株行距2 m×4 m,树龄6年,树高3 m左右,各处理间的树势及发病情况类似。

1.3 供试药剂

3%赤霉素水剂,由四川润尔科技有限公司生产;6%春雷霉素水剂,由华北制药集团爱诺有限公司生产;10%多抗霉素可湿性粉剂,由中农立华(天津)农用化学品有限公司生产;25%吡唑醚菌酯乳油,由山东亿嘉农化有限公司生产;80%代森锰锌可湿性粉剂,由利民化学有限责任公司生产;75%戊唑·肟菌酯水分散粒剂,由德国拜耳作物科学(中国)有限公司生产。

1.4 试验方法

1.4.1 试验设计

试验共设6个处理,即75%戊唑·肟菌酯WG 6000倍液(有效成分125 mg/kg)、25%吡唑醚菌酯EC 1500倍液(有效成分167 mg/kg)+80%代森锰锌WP 1000倍液(有效成分800 mg/kg)、10%多抗霉素WP 1000倍液(有效成分100 mg/kg)、6%春雷霉素AS 1500倍液(有效成分40 mg/kg)、3%赤霉素AS 600倍液(有效成分50 mg/kg)和清水对照(CK)。每处理重复4个小区,每小区成龄苹果树4株,小区随机排列,兑水喷雾。

1.4.2 施药时间

2021年3月30日(花序分离期)和4月18日(落花后)喷药2次。使用背负式电动喷雾器,以全株枝叶均匀喷雾的方法进行处理,喷药量为1500 L/hm2

1.5 调查时间和方法

1.5.1 调查时间

于5月2日收集疏除的幼果,每小区收集约25个果实,放入塑料盒内室温保湿观察。分别于6月2日(放置31 d)、6月25日(放置54 d)和7月17日(放置76 d)进行调查。
采收期每小区随机采摘25个表面健康的果实,放入塑料盒中室温保湿观察,分别于贮藏15 d和30 d后进行调查。

1.5.2 调查方法

由于引起苹果霉心病的病原较多,故按颜色区分将粉红色的粉红聚端孢(Trichothecium roseum)单独记录,链格孢(Alternaria alternata)、镰刀菌(Fusarium spp.)等深色病菌合并记录。定期调查、记录病果数,计算病果率[式(1)]和防治效果[式(2)]。
=×100%
(1)
=-×100%
(2)

1.6 数据分析

应用Excel 2007软件进行数据分析,采用Duncan’s新复极差法进行差异显著性检验。

2 结果与分析

2.1 疏果期调查

对疏果期采集的幼果进行调查(表1图1),不同处理放置31 d后苹果霉心病的发病率差异较大,总发病率为7.52%~49.99%,其中3%赤霉素水剂处理的发病率最高,与对照相差不大,说明开花前后喷洒赤霉素对阻止霉心病菌的侵染基本不起作用。随着贮藏时间的延长,不同处理的发病率均有所上升,贮藏76 d后,不同处理对苹果霉心病的防治效果具有显著性的差异,当对照病果率达95.33%时,75%戊唑·肟菌酯水分散粒剂对苹果霉心病的防治效果(74.56%)明显优于其他处理,25%吡唑醚菌酯乳油+80%代森锰锌可湿性粉剂处理的防治效果(64.75%)次之,且这2种处理对链格孢、镰刀菌的抑制效果要高于粉红聚端孢;虽然目前在生产上常用10%多抗霉素可湿性粉剂来防治苹果霉心病,但对‘玉华早富’的霉心病防治效果(54.31%)一般;3%赤霉素水剂处理效果最差,病果率达72.13%,防效仅23.76%。从引起苹果霉心病的病原种类上来看,引起‘玉华早富’霉心病的病原以粉红聚端孢为主,且贮藏前期75%戊唑·肟菌酯水分散粒剂和25%吡唑醚菌酯乳油+80%代森锰锌可湿性粉剂处理对粉红聚端孢的抑制效果较其他处理好。
表1 疏果期幼果病果率 %
处理 31 d 54 d 76 d
粉红聚端孢 链格孢、
镰刀菌
总计 粉红聚端孢 链格孢、
镰刀菌
总计 粉红聚端孢 链格孢、
镰刀菌
总计
75%戊唑·肟菌酯WG 6000倍液 3.33 4.19 7.52 7.07 4.19 11.26 19.99 4.19 24.18
25%吡唑醚菌酯EC 1500倍液+80%代森锰锌WP 1000倍液 6.90 7.06 13.96 22.26 7.06 29.32 26.47 7.06 33.53
10%多抗霉素WP 1000倍液 13.64 7.62 21.26 24.06 8.11 32.17 34.60 8.56 43.16
6%春雷霉素AS 1500倍液 24.15 12.35 36.50 33.22 14.77 48.00 42.22 15.70 57.92
3%赤霉素AS 600倍液 34.10 15.89 49.99 48.22 15.89 64.11 55.79 16.34 72.13
清水对照(CK) 43.55 11.66 55.21 53.73 15.25 68.98 70.11 25.22 95.33
图1 疏果期幼果贮藏76 d防治效果

图中不同大、小写字母表示经Duncan’s新复极差法检验分别在P<0.01和P<0.05水平差异显著,下同

Full size|PPT slide

2.2 采后调查

采收期调查结果(表2图2)表明,常温贮藏15 d,当对照病果率达9.75%时,除75%戊唑·肟菌酯水分散粒剂处理的果实中未见由粉红聚端孢引起的霉心病外,在其他各处理中都不同程度的观察到由粉红聚端孢、链格孢和镰刀菌引起的霉心病病果。75%戊唑·肟菌酯水分散粒剂和25%吡唑醚菌酯乳油+80%代森锰锌可湿性粉剂处理对霉心病防治效果较好,防效分别为87.05%和64.88%,10%多抗霉素可湿性粉剂处理的防治效果(60.12%)仅次于25%吡唑醚菌酯乳油+80%代森锰锌可湿性粉剂处理。常温贮藏30 d,当对照病果率达23.25%时,75%戊唑·肟菌酯水分散粒剂和25%吡唑醚菌酯乳油+80%代森锰锌可湿性粉剂处理的防治效果仍较好,分别为70.81%和69.41%,与其他3个处理的防效差异达到极显著水平,且这2个处理对粉红聚端孢的抑制效果好于对链格孢、镰刀菌的抑制效果。
表2 果实采后发病率 %
处理 15 d 30 d
粉红聚端孢 链格孢、镰刀菌 总计 粉红聚端孢 链格孢、镰刀菌 总计
75%戊唑·肟菌酯WG 6000倍液 0.00 1.25 1.25 2.50 4.25 6.75
25%吡唑醚菌酯EC 1500倍液+80%代森锰锌WP 1000倍液 0.25 2.75 3.00 2.00 5.00 7.00
10%多抗霉素WP 1000倍液 2.00 1.75 3.75 6.00 5.25 11.25
6%春雷霉素AS 1500倍液 2.75 2.50 5.25 8.75 6.00 14.75
3%赤霉素AS 600倍液 3.00 3.00 6.00 8.50 25.00 14.75
清水对照(CK) 5.75 4.00 9.75 12.00 11.25 23.25
图2 采后30 d防治效果

Full size|PPT slide

3 结论与讨论

苹果霉心病因病原菌多样、初侵染来源复杂等特性,在防治上较为困难。国内外在防治苹果霉心病上大多使用化学杀菌剂。国外研究者从花期到采收前1个月,使用苯菌灵(benomyl)、克菌丹(captan)、代森锰锌(mancozeb)等药剂,单独或混合进行多次喷施,但防治效果甚微[9-11]。还有研究学者从露红期到坐果期多次喷施吡唑醚菌酯(pyraclostrobin)、啶酰菌胺(boscalid)、多氧霉素(polyoxin B)、苯醚甲环唑(difenoconazole)、醚菌酯(kresoxim-methyl)等药剂进行防治,防治效果并不理想[12-14]。国内一些具有广谱性的杀菌剂也被用于防治苹果霉心病,如多菌灵(carbendazim)、代森锰锌(mancozeb)、甲基硫菌灵(thiophanate-methyl)、波尔多液(bordeaux mixture)等药剂,但在防治过程中或效果不稳定,或对花序和坐果率有一定的影响,施用不当甚至会引起果实锈斑[15-17]。本试验利用75%戊唑·肟菌酯水分散粒剂复配制剂或25%吡唑醚菌酯乳油+80%代森锰锌可湿性粉剂混合施用防治苹果霉心病,不仅在疏果期对幼果有很好的保护作用,在采收期对成熟果实同样具有良好的保护作用,防治效果都在60%以上,与其他处理差异显著。同时还避免了长期使用单剂病菌易产生抗药性的风险。
一些生物类药剂如多抗霉素、克菌康等目前也用于防治苹果霉心病,但此类药剂对苹果霉心病多种病原菌表现出部分效果好,部分效果一般或没有效果,且因在不同年份、不同地区、不同果园以及操作者的不同,出现防治效果不稳定的现象[18],甚至还会不同程度引起果实畸形[19]。春雷霉素(kasugamycin)是由放线菌(Streptomyces kasugaensis)产生的代谢产物,与多抗霉素同属农用抗生素类药剂,具有较强的内吸性,有预防和治疗的作用。农用抗生素除了具有对病原菌的直接杀灭作用,还具有对植物本身的诱抗作用。用武夷菌素处理番茄,植株体内的抗性相关酶活性都不同程度提高,免疫力增强。但在本试验中,用多抗霉素和春雷霉素处理苹果植株,对于苹果霉心病的防治并没有达到理想的效果,多抗霉素的防治效果在55%以下,可能与花前花后长期使用多抗霉素防治该病害,病菌抗药性逐步提高有关;而春雷霉素的防治效果更低,不到40%,说明春雷霉素对引起苹果霉心病的病原菌的抑制效果不佳,也不能诱导苹果植株产生对苹果霉心病的抗性。
赤霉素(GA)是在研究水稻恶苗病的过程中发现的一种自然植物激素,具有促进植物生长发育、细胞伸长分裂、提高种子发芽率等作用[20],同时在植物遭受病害时,外源施用赤霉素可提高植物的抗病性[21]。张锴等[22]对野生大豆外源施用赤霉素,发现植株体内抗病相关基因的表达量显著增加,说明GA可诱导野生大豆的抗病反应,降低病毒对其危害。外源施用GA番茄的叶片中可溶性钙含量、全钙含量及二者的比值都显著增加,番茄抗病能力增强[23]。本试验利用赤霉素在花序分离期和落花后进行喷施,结果显示赤霉素既不能保护疏果期的幼果,又不能保护采收期的成熟果免受苹果霉心病的为害,说明开花前后喷洒赤霉素对阻止霉心病病菌的侵染作用不大,同样也不能诱导苹果植株产生对苹果霉心病的抗性。
由于试验中涉及的生物制剂和诱抗剂较少,除常用于防治苹果霉心病的药剂多抗霉素外,并未筛选出其他理想的药剂用于防治该病,因此还需加大药剂筛选范围,并增加部分生物菌剂,以筛选出更多高效、无残留的生物制剂或免疫诱抗剂,为苹果霉心病的防治提供更多选择。综合疏果期与采收期的调查分析,在生产上可使用75%戊唑·肟菌酯水分散粒剂或25%吡唑醚菌酯乳油+80%代森锰锌可湿性粉剂防治苹果霉心病,效果较好,但要注意药剂的交替使用,以避免病菌抗药性的产生,同时要避开盛花期施药,以免造成果实畸形,建议在花序分离期和落花后喷药防治。

References

[1]
WENDY B Z. Guide to flowering plant families[M]. The University of North carolina press, chapel hill & London, 1994:430.
[2]
中国植物志编委. 中国植物志第20(2)卷[M]. 北京: 科学出版社, 1984:81.
[3]
赵能, 龚固堂. 中国柳属次级区分的探讨(一)[J]. 四川林业科技, 2005, 26(5):4-14.
[4]
王本泉. 柳树:全身是宝[J]. 医药与保健, 1995, 3(3):12.
[5]
牛德芳. 柳树浑身都是宝[J]. 内蒙古林业, 1995, 40(1):24-25.
[6]
蔡妲婧. 柳树药用验方[J]. 家庭医学, 2006, 19(4):59.
[7]
汪友良, 王宝松, 李荣锦, 等. 柳树在环境污染生物修复的作用[J]. 江苏林业科技, 2006, 33(2):40-44.
[8]
GREGER M, LANDBERG T. Use of willow in phytoextraction[J]. International journal of phytoremedlation, 1999, 1(2):115-123.
[9]
SMART L B, CAMERON K D. Genetic improvement of willow (Salix spp.) as a dedicated bioenergy crop[J]. Genetic improvement of bioenergy crops, 2008, 1(1):377-396.
[10]
A KARP, S J HANLEY, S O TRYBUSH, et al. Genetic improvement of willow for bioenergy and biofuels free access[J]. Journal of integrative plant biology, 2011, 53(2):151-165.
<p>Willows (<em>Salix</em> spp.) are a very diverse group of catkin-bearing trees and shrubs that are widely distributed across temperate regions of the globe. Some species respond well to being grown in short rotation coppice (SRC) cycles, which are much shorter than conventional forestry. Coppicing reinvigorates growth and the biomass rapidly accumulated can be used as a source of renewable carbon for bioenergy and biofuels. As SRC willows re-distribute nutrients during the perennial cycle they require only minimal nitrogen fertilizer for growth. This results in fuel chains with potentially high greenhouse gas reductions. To exploit their potential for renewable energy, willows need to be kept free of pests and diseases and yields need to be improved without significantly increasing the requirements for fertilizers and water. The biomass composition needs to be optimized for different end-uses. Yields also need to be sustainable on land less productive for food crops to reduce conflicts over land use. Advances in understanding the physiology and growth of willow, and in the identification of genes underlying key traits, are now at the stage where they can start to be used in breeding programs to help achieve these goals.</p><p><strong>Karp A, Hanley SJ, Trybush SO, Macalpine W, Pei M, Shield I </strong>(2011) Genetic improvement of willow for bioenergy and biofuels. <em>J. Integr. Plant Biol</em>. <strong>53</strong>(2), 151&ndash;165.</p>
[11]
PULFORD I, RIDDELL-BLACK D, STEWART C. HEAVY. Metal uptake by willow clones from sewage sludge-treated soil: the potential for phytoremediation[J]. International journal of phytoremediation, 2002, 4(1):59-72.
[12]
A SUGIURA, S F TYRREL, I SEYMOUR, et al. Water renew systems: waste water polishing using renewable energy crops[J]. Water science and technology: A journal of the international association on water pollution research, 2008, 57(9):1421-1428.
Macronutrients concentrations were measured during the establishment year of short rotation coppice of Salix viminalis, Populus trichocarpa, Eucalyptus gunnii irrigated with secondary treated effluent. Twenty four plots of 12.25 m2 located in Cranfield, Bedfordshire, UK on heavy fine clay were drip-irrigated in order to maintain their soil moisture at field capacity. Soil water was sampled at 30 cm and 60 cm with soil water suction cup samplers fortnightly. Willow and eucalyptus received more than 900 mm of effluent corresponding to more than 290 kg-N/ha, 30 kg-P/ha and 220 kg-K/ha. Poplar and unplanted plots received less than 190 kg-N/ha, 17 kg-P/ha and 120 kg-K/ha. For soil water nitrogen concentrations as for potassium concentrations, there was an irrigation effect only on eucalyptus planted plots. On all plots, there was no significant effect of tree presence or species. There was no phosphorus measurable in soil water samples. Groundwater chemistry was unaffected by irrigation. Thus, intensive irrigation of short rotation coppice during the establishment year should not be considered as a major threat to groundwater quality. Willows and eucalyptus can absorb almost a third more effluent than poplar and unplanted plots without having any significant effect on soil water chemistry.
[13]
T.A.VOLK, L.P.ABRAHAMSON, C A NOWAK, et al. The development of short-rotation willow in the northeastern United States for bioenergy and bioproducts, agroforestry and phytoremediation[J]. Biomass & bioenerg, 2006, 30(8-9):715-727.
[14]
TIMOTHY A V, THEO VERWIJST, PRADEEP J. THARAKAN, et al. Growing fuel: a sustainability assessment of willow biomass crops[J]. Frontiers in ecology and the environment, 2004, 2(8):411-418.
[15]
MIROSLAW MLECZEK, PAWEL RUTKOWSKI, IWONA RISSMANN, et al. Biomass productivity and phytoremediation potential of salix alba and salix viminalis[J]. Biomass & bioenergy, 2010, 34(9):1410-1418.
[16]
BRADSHAW Jr H D, STRAUSS S H. Breeding strategies for the 21st century: domestication of poplar.[C]In D I DICKMANN, J T ISEBRANDS, J E ECKENWALDER, J RICHARDSON. Poplar culture in North America part B. Ottawa: NRC research press, 2001:383-394.
[17]
DAVID N D, SHARON L D. Improving phytoremediation through biotechnology[J]. Current opinion in biotechnology, 2009, 20(2):204-206.
[18]
唐效蓉, 李午平, 黎玉才, 等. 杂交柳优良无性系组培快繁技术研究[J]. 湖南林业科技, 2002, 29(4):28-30.
[19]
关亚丽, 陈英, 黄敏仁. 簸箕柳组织培养初步研究[J]. 海南师范大学学报(自然科学版), 2009, 22(2):204-208.
[20]
H NEUNER, R BEIDERBECK. In vitro propagation of mature Salix exigua.L.by single node explant[J]. Silvae genettea, 1993, 42(6):308-310.
[21]
M.LIESEBACH, G.NAUJOKS. Approaches on vegetative propagation of diffficult-to-root salix caprea[J]. Plant cell, tissue and organ culture, 2004, 79(11):239-247.
[22]
陶双勇, 王庆斌, 邹威, 等. 钻天柳组织培养技术研究[J]. 林业科技, 2013, 38(5):1-3.
[23]
崔敏. 8种柳属植物微体快繁关键技术的研究[D]. 北京: 中国林业科学研究院, 2017.
[24]
张天宇, 燕丽萍, 夏阳, 等. 柳树愈伤组织的诱导研究[J]. 山东林业科技, 2007, 37(2):17-19.
[25]
季萍倩. 毛枝柳与钻天柳快速繁殖关键技术研究[D]. 北京: 中国林业科学研究院, 2015.
[26]
王雅群, 辛晨, 陈玉珍, 等. 北京颐和园西堤古柳组织培养体系的建立[J]. 林业科技开发, 2009, 23(3):48-51.
[27]
胡珊, 李青. 红叶腺柳组织培养及快速繁殖技术研究[C]. 见: 张启翔.中国观赏园艺研究进展2015. 厦门: 中国林业出版社, 2015:292-297.
[28]
PARK SY KIM, et al. Micropropagation of Salix pseudolasiogyne from nodal explants[J]. Plant cell tissue& organ culture, 2008, 93(3):341-346.
[29]
BHOJWANI, SANT S. Micropropagation method for a hybrid willow(Salix matsudana x alba NZ-1002)[J]. New Zealand journal of botany, 1980, 18(2):209-214.
[30]
余如刚, 杜雪玲, 夏阳, 等. 旱柳Q106组织培养及快繁体系的建立[J]. 草原与草坪, 2005, 112(5):57-59.
[31]
O S MASHKINA, T M TABATSKAVA, A I GOROBETS. Method of Clonal Micropropagation of Different Willow Species and Hybrids[J]. Applied biochemistry and microbiology, 2010, 46(8):769-775.
[32]
朱美秋, 李燕玲, 杜克久. 垂柳组织培养初步研究[J]. 河北林果研究, 2006, 21(3):269-271.
[33]
王善娥. 观赏用柳树无性系再生体系的建立及其遗传转化的研究[D]. 济南: 山东师范大学, 2007.
[34]
BERGMAN L, VON ARNOLD S, ERIKSSON T. Effects of N6 benzyladenine on shoots of five willow clones (Salix spp.) cultured in vitro[J]. Plant cell tissue organ cult, 1985, 4(2):135-144.
[35]
KHAN M, AHMAD N, ANIS M. The role of cytokinins on in vitro shoot production in Salix tetrasperma Roxb.: a tree of ecological importance[J]. Trees, 2011, 25(8):577-584.
[36]
KHAN M, ANIS M. Modulation of in vitro morphogenesis in nodal segments of Salix tetrasperma Roxb. through the use of TDZ, different media types and culture regimes[J]. Agroforestrysystems, 2012, 86(3):95-103.
[37]
AMO-MARCO J B, MD LLEDO. In vitro propagation of Salix tarraconensis Pau ex Font Quer, an endemic and threatened plant[J]. Vitro-Plant, 1996, 32(1):42-46.
[38]
张云慧, 姜长阳. 三蕊柳的组织培养及快速繁殖的研究[J]. 哈尔滨师范大学自然科学学报, 2011, 27(3):76-79.
[39]
黄华艳, 吴耀军. 柳窿桉芽器官离体培养研究[J]. 广西林业科学, 2003, 32(1):26-28.
[40]
郭小燕. 材用优良无性系杂交柳遗传转化体系的研究[D]. 济南: 山东师范大学, 2007.
[41]
宁婵, 贾双, 孙萌, 等. 圆叶柳无性系建立的研究[J]. 吉林林业科技, 2011, 40(3):1-4.
[42]
徐娜, 宁淑香, 张美燕, 等. 钻天柳无芽嫩茎离体快速繁殖的研究[J]. 辽宁师范大学学报(自然科学版), 2010, 33(4):490-493.
[43]
王向军, 陶晶, 张士俊, 等. 钻天柳腋芽组培快繁技术的研究[J]. 吉林林业科技, 2006, 35(2):8-11.
[44]
任真. 钻天柳组织培养技术研究[J]. 北方园艺, 2012, 36(18):144-146.
[45]
孙永莲, 戴晓港, 李小平, 等. 簸箕柳组培体系的建立[J]. 南京林业大学学报, 2019, 43(2):31-37.
[46]
敖敦, 杨海峰, 王雷. 沙柳组培技术初探[J]. 福建林业科技, 2016, 43(1):80-83.
[47]
DAGMAR SKÁLOVÁ, BOENA NAVRATILOVA, LENKA RICHTEROVA, et al. Biotechnological methods of in vitro propagation in willows (Salix spp.)[J]. Central European journal of biology, 2012, 7(5):931-940.
[48]
STOERHR M U, M CAI, L ZSUFFA. In vitro plant regeneration via callus culture of mature Salix exigua[J]. Canadian journal of forest research, 1989, 19(12):1634-1638.
Callus induction, callus growth, and plantlet regeneration were examined using leaf explants of three Salixexigua clones. Calli were initiated on three basal media supplemented with 0.1 mg/L (0.44 μM) or 0.5 mg/L (2.2 μM) of benzylaminopurine and 0.1 mg/L (0.45 μM) or 0.5 mg/L (2.3 μM) of 2,4-dichlorophenoxyacetic acid in a factorial fashion. After 7 weeks of growth, callus production was highest on woody plant medium. Developed calli were subsequently cultured on woody plant medium supplemented with either 0.1 or 0.5 mg/L of benzylaminopurine for shoot induction. Shoot primordia developed only at 0.1 mg/L (0.44 μM) benzylaminopurine in two clones, suggesting clonal variation in organogenic response. Shoots larger than 1.0 cm in length were successfully rooted in half-strength Murashige and Skoog medium without hormones.
[49]
GRÖNROOS L, S VON ARNOLD, T ERIKSSON. Callus production and somatic embryogenesis from floral explants of basket willow (Salix viminalis L.)[J]. Plant physiology, 1989, 134(5):558-566.
[50]
D IHRIG, R BEIDERBECK. In vitro Culture of «Wirrzopf» Tissue of Salix alba L.[J]. Plant physiology, 1995, 145(1-2):178-180.
[51]
张天宇. 农杆菌介导的拟南芥rd29A基因转化苜蓿的研究及柳树组织培养再生技术初探[D]. 兰州: 甘肃农业大学, 2007.
[52]
TIINA VAHALA, PRISKA STABEL. Genetic transformation of willows (Salix spp.) by Agrobacterium tumefaciens[J]. Department of phisiological botany, University of uppsala plant cell reports, 1989, 8(2):55.
[53]
JINGlI YANG, JAESEON YI, CHUANPING YANG, et al. Agrobacterium tumefaciens-mediated genetic transformation of salix matsudana Koidz.using mature seeds[J]. Tree physiology, 2013, 33(6):628-639.
[54]
LYYRA S, LIMA A, MERKL S.A. In vitro regeneration of Salix nigra from adventitious shoots[J]. Tree physiology, 2006, 26(7):969-975.
Black willow (Salix nigra Marsh.) is the largest and only commercially important willow species in North America. It is a candidate for phytoremediation of polluted soils because it is fast-growing and thrives on floodplains throughout eastern USA. Our objective was to develop a protocol for the in vitro regeneration of black willow plants that could serve as target material for gene transformation. Unexpanded inflorescence explants were excised from dormant buds collected from three source trees and cultured on woody plant medium (WPM) supplemented with one of: (1) 0.1 mg l(-1) thidiazuron (TDZ); (2) 0.5 mg l(-1) 6-benzoaminopurine (BAP); or (3) 1 mg l(-1) BAP. All plant growth regulator (PGR) treatments induced direct adventitious bud formation from the genotypes. The percentage of explants producing buds ranged from 20 to 92%, depending on genotype and treatment. Although most of the TDZ-treated inflorescences produced buds, these buds failed to elongate into shoots. Buds on explants treated with BAP elongated into shoots that were easily rooted in vitro and further established in potting mix in high humidity. The PGR treatments significantly affected shoot regeneration frequency (P < 0.01). The highest shoot regeneration frequency (36%) was achieved with Genotype 3 cultured on 0.5 mg l(-1) BAP. Mean number of shoots per explant varied from one to five. The ability of black willow inflorescences to produce adventitious shoots makes them potential targets for Agrobacterium-mediated transformation with heavy-metal-resistant genes for phytoremediation.
[55]
孙永莲. 簸箕柳组织培养体系建立遗传转化体系初探[D]. 南京: 南京林业大学, 2017.
[56]
王蒂. 植物组织培养[M]. 北京: 中国农业出版社, 2004.
[57]
BONDTA D, EGGERMONT K, DRUART P, et al. Agrobacterium-mediated transformation of apple (Malus x domestica Borkh.): an assessment of factors affecting gene transfer efficiency during early transformation steps[J]. Plant cell reports, 1994, 13(10):587-593.
The factors influencing transfer of an intron - containing β-glucuronidase gene to apple leaf explants were studied during early steps of an Agrobacterium tumefaciens-mediated transformation procedure. The gene transfer process was evaluated by counting the number of β-glucuronidase expressing leaf zones immediately after cocultivation, as well as by counting the number of β-glucuronidase expressing calli developing on the explants after 6 weeks of postcultivation in the presence of 50 mg/l kanamycin. Of three different tested disarmed A. tumefaciens strains, EHA101(pEHA101) was the most effective for apple transformation. Cocultivation of leaf explants with A. tumefaciens on a medium with a high cytokinin level was more conducive to gene transfer than cocultivation on media with high auxin concentrations. Precultivation of leaf explants, prior to cocultivation, slightly increased the number of β-glucuronidase expressing zones measured immediately after cocultivation, but it drastically decreased the number of transformed calli appearing on the explants 6 weeks after infection. Other factors examined were: Agrobacterium cell density during infection, bacterial growth phase, nature of the carbon source, explant age, and explant genotype.
[58]
冯勤, 杨美珠, 郑学勤, 等. 根癌土壤杆菌介导的咖啡转化[J]. 生物工程学报, 1992, 8(3):255-260.
[59]
AGRAWAL D C, GEBHARDT K. Rapid Micropropagation of Hybrid Willow (Salix) Established by Ovary Culture[J]. Journal of plant physiology, 1994, 143(6):763-765.
Share on Mendeley
PDF(1169 KB)

Accesses

Citation

Detail

Sections
Recommended

/