
Response of Potato Climatic Potential Productivity to Climate Change in Black Soil Region and Yield Increase Potential in Dominant Production Areas
LV Jiajia, LIU Song, LI Yuguang, GU Ping, HAN Junjie, GONG Lijuan, WANG Ping, LI Xiufen
Response of Potato Climatic Potential Productivity to Climate Change in Black Soil Region and Yield Increase Potential in Dominant Production Areas
Revealing the temporal and spatial evolution of potato climatic potential productivity in Heilongjiang Province, clarifying the effects of climate change, and understanding the yield increase potential of the dominant potato producing areas can provide basic reference for optimizing potato production layout and ensuring food security in black soil region. Based on daily meteorological data of 80 weather stations and the potato yield data in Heilongjiang Province from 1961 to 2020, the spatial and temporal variations of potato productivity were assessed through a step-by-step correction method, and the influential effects of the main climate change factors of radiation, air temperature and precipitation were quantified to optimize potato planting in the west of the Songnen Plain. The results showed that the average photosynthetic, light temperature and climatic potential productivity of potato in Heilongjiang Province from 1961 to 2020 were 28885, 25802 and 13843 kg/hm2, respectively. Photosynthetic, light temperature and climatic potential productivity exhibited insignificant upward, downward and downward trend, respectively, and the trends were consistent with the trends of radiation, temperature and precipitation in the potential growth period. The photosynthetic and light temperature productivity of potato increased gradually from north to south, and the high value area was located in the south of the Songnen Plain and the south of Mudanjiang; the climatic potential productivity decreased from the middle to the periphery; the effects of climate change on potato climatic potential productivity were as follows: the radiation effect was positive, while the combined effects of temperature, precipitation and climate change were mainly negative. For areas with low rainfall in the south of the Songnen Plain, the increase of temperature and precipitation had positive effect on the improvement of potato climatic potential productivity, while for areas with high precipitation in the east of the Songnen Plain, the effects were more harmful than beneficial. Because of the superior climate and land resources in the west of the Songnen Plain, there is still a huge increase potential of yield per unit area in potato planting.
black soil region / potato / climatic potential productivity / climate change / effect {{custom_keyword}} /
表1 土壤样品的微生物多样性指数 |
Sample | Sobs | Shannon | Simpson | Ace | Chao1 | Coverage/% |
---|---|---|---|---|---|---|
对照 | 1921.0±136.7a | 6.2±0.1a | 0.007±0.002a | 2242.7±127.3a | 2249.3±118.3a | 98±0.00a |
处理 | 1646.3±61.78b | 5.8±0.12b | 0.012±0.003a | 1906.1±66.1b | 1923.7±92.2b | 98±0.00a |
表2 土壤细菌群落功能丰度表 |
一级功能 | 二级功能 | C | 百分比/% | T | 百分比/% | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Metabolism | Amino Acid Metabolism | 2854091 | 10.47 | 2331140 | 10.18 | |||||||||
Metabolism | Carbohydrate Metabolism | 2670399 | 9.80 | 2206482 | 9.64 | |||||||||
Environmental Information Processing | Membrane Transport | 2604045 | 9.56 | 2383110 | 10.41 | |||||||||
Genetic Information Processing | Replication and Repair | 2021780 | 7.42 | 1708886 | 7.46 | |||||||||
Metabolism | Energy Metabolism | 1804503 | 6.62 | 1491229 | 6.51 | |||||||||
Unclassified | Poorly Characterized | 1398465 | 5.13 | 1172485 | 5.12 | |||||||||
Genetic Information Processing | Translation | 1301802 | 4.78 | 1122984 | 4.90 | |||||||||
Metabolism | Metabolism of Cofactors and Vitamins | 1245312 | 4.57 | 1025830 | 4.48 | |||||||||
Unclassified | Cellular Processes and Signaling | 1034875 | 3.80 | 871649 | 3.81 | |||||||||
Metabolism | Lipid Metabolism | 984298 | 3.61 | 804376 | 3.51 | |||||||||
Metabolism | Nucleotide Metabolism | 925572 | 3.40 | 774079 | 3.38 | |||||||||
Cellular Processes | Cell Motility | 911201 | 3.34 | 863550 | 3.77 | |||||||||
Metabolism | Xenobiotics Biodegradation and Metabolism | 778081 | 2.86 | 593932 | 2.59 | |||||||||
Unclassified | Genetic Information Processing | 735318 | 2.70 | 615411 | 2.69 | |||||||||
Genetic Information Processing | Folding, Sorting and Degradation | 708558 | 2.60 | 616715 | 2.69 | |||||||||
Unclassified | Metabolism | 700475 | 2.57 | 570276 | 2.49 | |||||||||
Metabolism | Glycan Biosynthesis and Metabolism | 627282 | 2.30 | 536108 | 2.34 | |||||||||
Environmental Information Processing | Signal Transduction | 617938 | 2.27 | 531786 | 2.32 | |||||||||
Genetic Information Processing | Transcription | 605085 | 2.22 | 496863 | 2.17 | |||||||||
一级功能 | 二级功能 | C | 百分比/% | T | 百分比/% | |||||||||
Metabolism | Metabolism of Terpenoids and Polyketides | 580423 | 2.13 | 467502 | 2.04 | |||||||||
Metabolism | Enzyme Families | 552628 | 2.03 | 462769 | 2.02 | |||||||||
Metabolism | Metabolism of Other Amino Acids | 499610 | 1.83 | 390798 | 1.71 | |||||||||
Metabolism | Biosynthesis of Other Secondary Metabolites | 279783 | 1.03 | 227262 | 0.99 | |||||||||
Cellular Processes | Cell Growth and Death | 162926 | 0.60 | 131388 | 0.57 | |||||||||
Human Diseases | Infectious Diseases | 116452 | 0.43 | 90288 | 0.39 | |||||||||
Organismal Systems | Endocrine System | 109991 | 0.40 | 90806 | 0.40 | |||||||||
Cellular Processes | Transport and Catabolism | 89898 | 0.33 | 70245 | 0.31 | |||||||||
Human Diseases | Neurodegenerative Diseases | 86995 | 0.32 | 68964 | 0.30 | |||||||||
Environmental Information Processing | Signaling Molecules and Interaction | 46054 | 0.17 | 34673 | 0.15 | |||||||||
Organismal Systems | Environmental Adaptation | 40935 | 0.15 | 35208 | 0.15 | |||||||||
Human Diseases | Cancers | 40283 | 0.15 | 26719 | 0.12 | |||||||||
Human Diseases | Metabolic Diseases | 23895 | 0.09 | 18772 | 0.08 | |||||||||
Organismal Systems | Nervous System | 22358 | 0.08 | 17221 | 0.08 | |||||||||
Organismal Systems | Immune System | 15163 | 0.06 | 12411 | 0.05 | |||||||||
Organismal Systems | Digestive System | 13605 | 0.05 | 8702 | 0.04 | |||||||||
Organismal Systems | Circulatory System | 11550 | 0.04 | 10397 | 0.05 | |||||||||
Human Diseases | Immune System Diseases | 10862 | 0.04 | 7727 | 0.03 | |||||||||
Organismal Systems | Excretory System | 10817 | 0.04 | 8228 | 0.04 | |||||||||
Human Diseases | Cardiovascular Diseases | 4608 | 0.02 | 1683 | 0.01 | |||||||||
Cellular Processes | Cell Communication | 54 | 0.00 | 36 | 0.00 | |||||||||
Organismal Systems | Sensory System | 18 | 0.00 | 12 | 0.00 |
[1] |
吴金华, 盛芝露, 杜加强, 等. 1956—2017年东北地区气温和降水的时空变化特征[J]. 水土保持研究, 2021, 28(3):340-347,415.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[2] |
姚玉璧, 雷俊, 夏权, 等. 气候变化主要因子对马铃薯生物量积累及产量和品质的影响[J]. 生态环境学报, 2021, 30(1):1-9.
可下载PDF全文。
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[3] |
李扬, 王靖, 唐建昭, 等. 中国马铃薯主产区生产特点、限制因子和对策分析[J]. 中国马铃薯, 2020, 34(6):374-382.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[4] |
张秀云, 姚玉璧, 雷俊, 等. CO2浓度升高与增温对马铃薯产量及品质的复合影响[J]. 干旱地区农业研究, 2019, 37(4):240-246.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[5] |
唐建昭, 肖登攀, 柏会子. 未来气候情景下农牧交错带不同灌溉水平马铃薯产量和水分利用效率[J]. 农业工程学报, 2020, 36(2):103-112.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[6] |
姚玉璧, 杨金虎, 肖国举, 等. 气候变暖对马铃薯生长发育及产量影响研究进展与展望[J]. 生态环境学报, 2017, 26(3):538-546.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[7] |
姚玉璧, 王润元, 刘鹏枭, 等. 气候暖干化对半干旱区马铃薯水分利用效率的影响[J]. 土壤通报, 2016, 47(3):594-598.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[8] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[9] |
黑龙江省统计局,国家统计局黑龙江调查总队编. 黑龙江统计年鉴-2021[M]. 北京: 中国统计出版社, 2021,215-218.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[10] |
吕佳佳, 王晾晾, 石磊, 等. 寒地水稻关键生育期涝害的过程雨量指标构建[J]. 生态学杂志, 2019, 38(5):1402-1409.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[11] |
吕佳佳, 朱海霞, 宫丽娟, 等. 1971—2016年寒地大豆霜冻害时空演变特征及对产量影响[J]. 大豆科学, 2020, 39(2):260-268.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[12] |
吕佳佳, 朱海霞, 曲辉辉, 等. 高寒区大豆关键生育期低温冷害指标构建[J]. 应用生态学报, 2022, 33(6):1581-1588.
构建高寒区大豆低温冷害指标对系统分析高寒区大豆适应气候变化对策、防灾减灾及其他胁迫的协同适应技术具有参考意义。本研究利用1980—2020年黑龙江省大豆低温冷害灾情史料、生育期资料及研究区78个气象站逐日气温资料,采用GIS技术匹配生育期与气象数据,考虑不同生育阶段积温距平、日平均气温低于生育下限温度的持续日数,构建高寒区大豆综合性冷害指数。利用K-S分布拟合检验及置信区间下限值确定阈值方法,构建高寒区大豆关键生育阶段低温冷害等级指标。结果表明: 大豆播种-出苗期,研究区大豆轻度、中度、重度冷害低温指数下限值分别为0.061、0.115、0.237;出苗-开花期分别为0.072、0.152、0.312;开花-成熟期分别为0.133、0.245、0.412。由低温指数反演的黑龙江省大豆低温冷害时间分布与历史灾情记载吻合度很高;空间上表现出较明显的纬度特征,冷害发生频率呈自南向北逐渐增加的趋势。
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[13] |
张正斌, 陈兆波, 孙传范, 等. 气候变化与东北地区粮食新增[J]. 中国生态农业学报, 2011, 19(1):193-196.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[14] |
赵俊芳, 孔祥娜, 姜月清, 等. 基于高时空分辨率的气候变化对全球主要农区气候生产潜力的影响评估[J]. 生态环境学报, 2019, 28(1):1-6.
可下载PDF全文。
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[15] |
李秀芬, 赵慧颖, 朱海霞, 等. 黑龙江省玉米气候生产力演变及其对气候变化的响应[J]. 应用生态学报, 2016, 27(8):2561-2570.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[16] |
梁淑敏, 王颖, 杨琼芬, 等. 我国云南山区马铃薯周年生产潜力的时空分布特征[J]. 中国农业资源与区划, 2016, 37(6):201-207.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[17] |
马雅丽, 郭建平, 赵俊芳. 晋北农牧交错带作物气候生产潜力分布特征及其对气候变化的响应[J]. 生态学杂志, 2019, 38(3):818-827.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[18] |
杨丽桃, 王胜, 江像评. 内蒙古马铃薯生育期气候生产潜力时空模拟分析[J]. 干旱气象, 2021, 39(5):816-823.
利用1961—2018年内蒙古自治区119个气象站常规气象观测资料和1981—2018年11个农气站马铃薯生育期观测资料,采用逐级订正法,模拟分析马铃薯生育期气候生产潜力的时空变化特征,探讨马铃薯气候生产潜力对辐射、气温、降水变化的响应。结果表明:(1)内蒙古马铃薯生育期气候生产潜力多年平均为18 889 kg·hm<sup>-2</sup>,明显低于光合(32 095 kg·hm<sup>-2</sup>)和光温(30 829 kg·hm<sup>-2</sup>)两级生产潜力。(2)近58 a各级生产潜力均呈不显著减小趋势,且年际波动较大,其中气候生产潜力的年代际波动幅度更大,其变化与降水量变化存在显著正相关。(3)内蒙古马铃薯生育期光合生产潜力自西向东递减,光温生产潜力东西两侧低、中部高,而气候生产潜力高值区主要在中部偏南地区。(4)内蒙古大部地区马铃薯生育期气候生产潜力呈减小趋势,仅呼伦贝尔市中北部、兴安盟西北部、锡林郭勒盟东北部及赤峰市西部等地区为增大趋势。(5)辐射变化对马铃薯生育期气候生产潜力影响大部地区不明显。气温变化对马铃薯生育期气候生产潜力影响多为负效应,中西部大部地区和东南部地区负效应最为明显;正效应仅集中在呼伦贝尔市中北部、兴安盟西北部地区。内蒙古西部大部地区、呼和浩特市、赤峰市西部及兴安盟东部等地区降水变化对马铃薯生育期气候生产潜力的影响为正效应,而乌兰察布市南部、赤峰市东部和呼伦贝尔市西部和东部等地区为负效应。
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[19] |
朱娅秋, 何英彬, 焦伟华, 等. 基于GIS的吉林省马铃薯种植气候适宜性精细化区划[J]. 中国农业资源与区划, 2021, 42(7):128-136.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[20] |
王素艳, 霍治国, 李世奎, 等. 中国北方冬小麦的水分亏缺与气候生产潜力——近40年来的动态变化研究[J]. 自然灾害学报, 2003,(1):121-130.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[21] |
马树庆. 吉林省农业气候[M]. 北京: 气象出版社, 1996.94-95.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[22] |
毛飞, 张光智, 徐祥德. 参考作物蒸散量的多种计算方法及其结果的比较[J]. 应用气象学报, 2000,(S1):128-136.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[23] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[24] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[25] |
徐瑞阳, 何英彬, 赵锡海, 等. 基于DSSAT模型的1961—2017年东北地区马铃薯潜在单产及其影响因子分析[J]. 中国农业资源与区划, 2021, 42(12):102-114.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[26] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |