Plant Salt-exclusion Mechanism: A Review

LI Xia, LIU Chuanxin, XU Bin, DONG Rongshu, HUAN Hengfu, HUANG Chunqiong, YAN Linling, WANG Wenqiang, YANG Hubiao, YU Daogeng, WANG Zhiyong, LIU Yiming

PDF(1373 KB)
PDF(1373 KB)
Chinese Agricultural Science Bulletin ›› 2023, Vol. 39 ›› Issue (27) : 86-94. DOI: 10.11924/j.issn.1000-6850.casb2022-0680

Plant Salt-exclusion Mechanism: A Review

Author information +
History +

Abstract

This paper aims to provide new ideas for exploring the internal mechanism of plant salt exclusion, screening of salt-exclusion plants and breeding of salt-exclusion crops. The authors review how plants cope with salt stress through salt-exclusion pathways such as tissue structure adaptation, signaling pathway and transporter gene regulation, clarify the key roles of casparian strip of endodermis, suberization of endodermis and exodermis of root, pericycle and xylem parenchyma in plant salt exclusion, and elucidate the species differences in tissue structure in plant salt exclusion. SOS pathway, NHX, HAK and HKT and other transporters play important regulatory roles in the process of plant salt exclusion. SOS pathway, NHX and HAK are ubiquitous in various types of root cells, mainly responsible for Na+ exclusion, transport and vacuole compartmentalization; HKT genes are mainly expressed in xylem parenchyma tissues, and it may play role of salt compartmentalization in xylem parenchyma.

Key words

salt-resistant plants / salt exclusion / salt avoidance / pericycle / tissue barriers

Cite this article

Download Citations
LI Xia , LIU Chuanxin , XU Bin , DONG Rongshu , HUAN Hengfu , HUANG Chunqiong , YAN Linling , WANG Wenqiang , YANG Hubiao , YU Daogeng , WANG Zhiyong , LIU Yiming. Plant Salt-exclusion Mechanism: A Review. Chinese Agricultural Science Bulletin. 2023, 39(27): 86-94 https://doi.org/10.11924/j.issn.1000-6850.casb2022-0680

0 引言

1979年以来,中国经济的快速发展、中国城市规模越来越大、城市人口和面积也逐渐增加,由此而导致的城市生活垃圾也呈现迅猛增长的势头,目前已经成为中国城市发展中的一个严重问题[1]。哈尔滨市是东北地区的重要城市之一,人口增长和城市化进程也十分迅速,自1990年垃圾产量年递增较快,其城市生活垃圾产量也呈现爆炸性增加。目前,哈尔滨市处理生活垃圾的方法受技术条件限制,仍以简单填埋或直接堆放为主,而垃圾堆放过程中由于其分解缓慢,在分解过程中会产生含有大量有害物质、例如有机污染物、重金属、致病细菌等,对土壤和周围环境造成了严重污染[2]。土壤细菌是生态系统中的主要分解者[3],对于城镇生活垃圾的降解具有十分重要的作用,垃圾在土壤细菌的作用下,经过复杂的分解、吸收、转化反应,将垃圾分解成无机物质[4]。因此,探究生活垃圾堆放条件下土壤细菌群落结构的组成和多样性,对评估垃圾堆放对环境的影响以及恢复垃圾污染造成的土壤污染具有重要意义。
目前针对城市生活垃圾的研究主要集中在垃圾堆放后对土壤理化性质[5]和对土壤重金属污染[6]。例如,张青青等[7]研究发现垃圾长期堆放导致土壤pH降低,而土壤有机质、全氮、有效磷、速效钾增加;旦增等[8]通过对西藏班戈县垃圾填埋场土壤环境质量评估发现,垃圾场周边土壤重金属含量显著升高。而针对生活垃圾堆放对土壤微生物的研究,国内外学者也进行了一些研究,例如,Tan等[9]对厌氧污泥土壤细菌群落结构组成进行了研究;张子赟[10]对安徽合肥市垃圾堆放条件下土壤细菌群落结构和功能进行了研究。黑龙江省属于高寒地区,由于积温少、冬季漫长,垃圾分解缓慢,土壤微生物结构、多样性和功能均和暖温带地区有显著差异。然而,针对于东北地区,尤其是高寒地区生活垃圾堆放条件下土壤微生物群落结构的研究一直没有进行深入阐明。随着分子生物学技术的不断发展,尤其是二代高通量测序技术在微生物生态学中的应用,利用高通量测序技术,不仅可以准确的揭示出土壤微生物群落结构组成和多样性,而且还可以对其功能进行预测分析[11,12]
因此,揭示黑龙江省哈尔滨市长期生活垃圾堆放条件下土壤细菌群落结构和功能的影响就显得尤为重要。本研究中,笔者以哈尔滨市生活垃圾堆放出的土壤和相邻未污染土壤为研究对象,利用Illumina MiSeq高通量测序技术,对土壤细菌群落结构和功能进行研究,以期揭示高寒地区土壤细菌群落结构对于生活垃圾长期堆放的变化规律,以期为合理处理生活垃圾以及土壤修复提供理论依据。

1 材料与方法

1.1 采样地概况

采样地点位于黑龙江省哈尔滨市双城区亿丰生活垃圾处理厂的核心堆放区,该区域面积为70000 m2。该地区属于温带季风气候,年平均气温为5.1℃,年平均降水量约为569.1 mm,年日照时数约2580 h,年平均无霜期139天,平均相对湿度64%;该地区土壤类型为典型东北黑土。

1.2 样品采集

在亿丰生活垃圾处理厂选择长期堆放的土壤区域,于2020年5月进行取样。按照5点采样法选择3个10 m×10 m规格的样方,除去土壤表面垃圾物和表层土,用土钻钻取距离表层约0~20 cm处的土壤,将5个土样混合均匀取1 kg装入无菌自封袋,作为处理组(T);同时在垃圾堆周围50 m处,在未堆放垃圾作为空白对照,同样用土钻随机钻取5个0~20 cm处的土壤混合均匀取1 kg装入无菌自封袋,作为对照组(C),然后立即放入低温保温箱带回实验室后过2 mm筛处理,然后置于-80℃冰箱中用于后续分析。

1.3 土壤总DNA的提取和高通量测序

土壤基因组DNA采用Fast DNA® Spin Kit for Soil (MP Biomedicals,U.S.A)试剂盒进行提取,具体方法参照使用说明。提取完的土壤基因组DNA用NanoDrop2000进行检测。高通量测序引物采用338F和806R对细菌16S rRNA的V3~V4区进行扩增,扩增体系如下:
DNA 1 μL、引物1 μL、PCR Reaction Mix 12.5 μL,总体积为25 μL。扩增程序为95℃ 5 min、30个循环(95℃ 1 min、52℃ 1 min、72℃ 1 min),最后72℃ 10 min。PCR扩增产物用2%琼脂糖凝胶电泳进行检测,然后PCR产物进行高通量测序,高通量测序由上海美吉生物医药科技有限责任公司负责完成。

1.4 数据处理与统计测序数据

测序数据采用QIIME软件进行处理,双端序列使用Trimmomatic软件进行质量控制,去除Barcode序列和引物序列后,用FLASH软件拼接和过滤,用usearch软件去除嵌合体,获得有效序列;使用UPARSE软件(v7.0.1090)在97%的相似度下对有效序列进行OTU聚类,采用RDP classifier贝叶斯算法对OTU代表序列进行分类学分析将优化序列根据Silva库中的参考序列对OTU进行种属鉴定,最后获得OTU表。Alpha多样性指数(Chao和ACE、Shannon和Simpson)使用Mothur (v.1.30.2)进行计算。功能分析使用PICRUSt (v2.0.0)软件在线分析完成。Venn图、物种丰度图等用R实现。

2 结果与分析

2.1 测序结果

对无生活垃圾覆盖(C)和有生活垃圾覆盖(T)处理的土壤细菌16S rRNA基因序列的V4可变区进行高通量测序,分别得到113294和106606条序列,在剔除引物、低质量序列后,分别得到85435和76432条有效序列。对有效序列基于97%的序列相似度进行归并和OTU划分,处理组和对照组一共得到4579个有效的OTU,分别为2538和2041个;在门水平得到53个分类单元,2个处理分别为52和52个;在属水平得到586个分类单元,2个处理分别为559和484个。

2.2 土壤细菌多样性

2个处理的土壤细菌Alpha多样性结果见表1。由表1可知,处理组的Chao1和ACE指数均比对照组低14.47%和15.01%,无生活垃圾覆盖的土壤细菌具有更高的丰富度;处理组的Shannon指数低于对照组6.45%,而Simpson指数高于对照组,没有生活垃圾覆盖的土壤物种多样性更高。2组样本的测序覆盖率均在98%以上,说明取样合理,测序数据能够真实反映土壤样品中的微生物群落。
表1 土壤样品的微生物多样性指数
Sample Sobs Shannon Simpson Ace Chao1 Coverage/%
对照 1921.0±136.7a 6.2±0.1a 0.007±0.002a 2242.7±127.3a 2249.3±118.3a 98±0.00a
处理 1646.3±61.78b 5.8±0.12b 0.012±0.003a 1906.1±66.1b 1923.7±92.2b 98±0.00a

2.3 土壤细菌组成土壤细菌群落组成

2个处理的土壤细菌群落组成见图1和2。分析结果表明:在门水平,处理组与对照组的土壤细菌组成非常相似,相对丰度均以变形菌门(Proteobacteria)为最高,在2处理中分别为40.3%和42.6%,其次依次为拟杆菌门(Bacteroidetes)(21.7%、9.1%)、绿弯菌门(Chloroflexi)(5.9%、12.9%)、酸杆菌门(Acidobacteria)(7.3%、7.3%)、放线菌门(Actinobacteria)(4.2%、3.8%)、芽单胞菌门(Gemmatimonadetes)(2.3%、3.9%)、蓝细菌门(Cyanobacteria)(5.0%、1.0%)、Ignavibacteriae (2.0%、3.3%)(图1)。相较于对照组,处理组中变形菌门、绿弯菌门、芽单胞菌门、Ignavibacteriae的相对丰度增加,其中绿弯菌门增加幅度最大,为7.0%;而拟杆菌门、放线菌门、蓝细菌门等相对丰度减少,其中拟杆菌门减少幅度最大,为12.6%。
图1 不同处理土壤样品在门分类水平上细菌组成

Full size|PPT slide

在属水平上,2组处理均以黄单胞菌科的相对丰度最高,分别为5.1%和5.9%(图2)。硫化细菌属(Bacillus)的相对丰度最高,分别为3.1%和7.3%(图2)。相较于对照组,处理组中硫化细菌属(Bacillus)、厌氧绳菌属(Anaerolineaceae)、生孢噬胞菌属(Saprospiraceae)的相对丰度增加,分别增加4.3%、5.1%、1.4%;黄杆菌属(Flavobacterium)、丛毛单胞菌属(Comamonas)、噬纤维菌科(Cytophagaceae)的相对丰度减少,分别减少38.2%、17.3%、14.2%。
在细菌门水平上,垃圾堆放和对照土壤细菌门水平差异结构分析见图3A。从图3A可以看出,与对照相比,垃圾堆放显著提高了土壤Chloroflexi、Gemmatimonadetes、Aminicenantes、Parcubacteria、Spirochaetae的丰度(P<0.05);但是却显著降低了土壤Bacteroidetes、Chlorobi、Saccharibacteria的丰度(P<0.05)。
图2 不同处理土壤样品在属分类水平上细菌组成

Full size|PPT slide

图3 垃圾堆放对土壤细菌群落门(A)和属(B)水平的差异分析
*代表P<0.05;**代表P<0.01;***代表P<0.001

Full size|PPT slide

在细菌属水平上,垃圾堆放和对照土壤细菌属水平差异结构分析见图3B。与对照相比,垃圾堆放显著提高了土壤Desulfatiglaus、Gemmatimondaceae、Ignavibacterium、Xanthomonadales的丰度,而显著降低了土壤Flavobacterium的丰度。
通过Venn图分析2个处理土壤细菌共有的OTU数量及特有的OTU数量,共有的OTU数量有1775个,占总数的63.3%,对照组特有的属数量有763个,占总数的27.2%,处理组特有的属数量有266个,占总数的9.5%(图4)。
图4 不同处理土壤细菌在属分类水平上的Venn图

Full size|PPT slide

2.4 土壤的细菌功能性预测

通过对KEGG数据库(Kyoto encyclopedia of genes and genomes)进行比对预测结果(表2),发现在KEGG一级功能层中有6个代谢通路:代谢(Metabolism)、环境信息处理(Environmental Information Processing)、遗传信息处理(Genetic Information Processing)、细胞过程(Cellular processes)、人类疾病(Human Diseases)、有机体系统(Organismal Systems),其中代谢功能的占比最高,处理组中达到了10.47%,对照组为10.18%。在基因二级功能预测分析中发现由氨基酸代谢(Amino acid metabolism)、碳水化合物代谢(Carbohydrate metabolism)、膜运输(Membrane transport)、复制和修复(Replication and Repair)、能量代谢(Energy metabolism)、辅助因子和维生素的代谢(Metabolism of cofactors and vitamins)、类脂化合物代谢(Lipid metabolism)、核苷酸代谢(Nucleotide metabolism)、信号传导(Signal transduction)、类脂化合物代谢(Lipid metabolism)等41个子功能组成(表2)。相较于对照组,处理组中的膜运输、复制和修复、细胞运动等功能增强,相对丰度分别升高0.85%、0.02%、0.43%;氨基酸代谢、碳水化合物代谢、能量代谢、辅助因子和维生素的代谢、类脂化合物代谢等功能有所降低,相对丰度分别降低0.29%、0.16%、0.11%、0.09%、0.27%。
表2 土壤细菌群落功能丰度表
一级功能 二级功能 C 百分比/% T 百分比/%
Metabolism Amino Acid Metabolism 2854091 10.47 2331140 10.18
Metabolism Carbohydrate Metabolism 2670399 9.80 2206482 9.64
Environmental Information Processing Membrane Transport 2604045 9.56 2383110 10.41
Genetic Information Processing Replication and Repair 2021780 7.42 1708886 7.46
Metabolism Energy Metabolism 1804503 6.62 1491229 6.51
Unclassified Poorly Characterized 1398465 5.13 1172485 5.12
Genetic Information Processing Translation 1301802 4.78 1122984 4.90
Metabolism Metabolism of Cofactors and Vitamins 1245312 4.57 1025830 4.48
Unclassified Cellular Processes and Signaling 1034875 3.80 871649 3.81
Metabolism Lipid Metabolism 984298 3.61 804376 3.51
Metabolism Nucleotide Metabolism 925572 3.40 774079 3.38
Cellular Processes Cell Motility 911201 3.34 863550 3.77
Metabolism Xenobiotics Biodegradation and Metabolism 778081 2.86 593932 2.59
Unclassified Genetic Information Processing 735318 2.70 615411 2.69
Genetic Information Processing Folding, Sorting and Degradation 708558 2.60 616715 2.69
Unclassified Metabolism 700475 2.57 570276 2.49
Metabolism Glycan Biosynthesis and Metabolism 627282 2.30 536108 2.34
Environmental Information Processing Signal Transduction 617938 2.27 531786 2.32
Genetic Information Processing Transcription 605085 2.22 496863 2.17
一级功能 二级功能 C 百分比/% T 百分比/%
Metabolism Metabolism of Terpenoids and Polyketides 580423 2.13 467502 2.04
Metabolism Enzyme Families 552628 2.03 462769 2.02
Metabolism Metabolism of Other Amino Acids 499610 1.83 390798 1.71
Metabolism Biosynthesis of Other Secondary Metabolites 279783 1.03 227262 0.99
Cellular Processes Cell Growth and Death 162926 0.60 131388 0.57
Human Diseases Infectious Diseases 116452 0.43 90288 0.39
Organismal Systems Endocrine System 109991 0.40 90806 0.40
Cellular Processes Transport and Catabolism 89898 0.33 70245 0.31
Human Diseases Neurodegenerative Diseases 86995 0.32 68964 0.30
Environmental Information Processing Signaling Molecules and Interaction 46054 0.17 34673 0.15
Organismal Systems Environmental Adaptation 40935 0.15 35208 0.15
Human Diseases Cancers 40283 0.15 26719 0.12
Human Diseases Metabolic Diseases 23895 0.09 18772 0.08
Organismal Systems Nervous System 22358 0.08 17221 0.08
Organismal Systems Immune System 15163 0.06 12411 0.05
Organismal Systems Digestive System 13605 0.05 8702 0.04
Organismal Systems Circulatory System 11550 0.04 10397 0.05
Human Diseases Immune System Diseases 10862 0.04 7727 0.03
Organismal Systems Excretory System 10817 0.04 8228 0.04
Human Diseases Cardiovascular Diseases 4608 0.02 1683 0.01
Cellular Processes Cell Communication 54 0.00 36 0.00
Organismal Systems Sensory System 18 0.00 12 0.00

3 结论

生活垃圾堆放条件下土壤细菌群落alpha多样性显著降低,而且垃圾堆放改变了土壤细菌的群落结构组成,但是土壤细菌主要的功能并未发生显著改变,其一级代谢功能均为代谢,二级代谢功能均为氨基酸和碳水化合物代谢。因此,为降低垃圾堆放对土壤微生物的影响,还需要进一份对生活垃圾进行分类及无害化利用。本研究结果对于进一步探究生活垃圾堆放对土壤微生物结构和功能提供了基础数据,而且对于未来合理利用生活垃圾提供理论参考。

4 讨论

4.1 垃圾堆放对土壤细菌多样性的影响

本研究通过对哈尔滨市生活垃圾处理堆放区土壤细菌群落结构和多样性分析发现,长期垃圾堆放导致土壤细菌群落Shannon多样性指数和Chao多样性指数显著降低(表1)。这与张子赟[10]的研究结果一致。这表明长期的生活垃圾堆放会导致土壤细菌群落多样性降低,垃圾堆放过程中所产生的大量有机化合物、有毒物质、重金属、病毒、寄生虫等会影响土壤原有细菌群落多样性,使得土壤细菌群落多样性和丰富度显著下降,而土壤细菌群落多样性和丰富度的下降会导致土壤质量变差,土壤自身难以恢复到之前的原有状态。但是也有研究发现,垃圾长期堆放后土壤细菌多样性和丰富度会显著升高[13]。这说明生活垃圾堆放对土壤细菌群落多样性的影响是不同的,究其原因可能是生活垃圾含有大量厨余垃圾和含有大量营养元素的垃圾,这些垃圾含有细菌生长和繁殖所急需的养料,因此会显著提高土壤微生物的多样性和丰富度。而且垃圾堆放的深度[14]、生活垃圾种类[15]、堆放时间[16]、垃圾堆放区域[17]、土壤质地[18]等均会影响土壤微生物多样性和丰富度,因此需要从时空上对垃圾堆放对土壤微生物的影响进行分析。

4.2 垃圾堆放对土壤细菌群落结构的影响

研究结果发现,垃圾堆积堆放与未堆放在土壤细菌门水平组成相似,但是其相对优势细菌门不同。垃圾堆放土壤细菌主要以变形菌门、拟杆菌门、绿弯菌门和酸杆菌门为主。吴双等[19]对北京市北神树生活垃圾填埋场的土壤细菌群落结构研究发现,垃圾堆放中土壤细菌门卫变形菌门,这也本研究的结果一致。而且,何芝等[20]对山东、广东、上海、重庆生活垃圾堆放土壤细菌群落结构研究结果也同样发现变形菌门是最主要的细菌门。
和未堆放生活垃圾的土壤相比,垃圾堆放显著增加了土壤绿弯菌门、芽单胞菌门的丰度。绿弯菌是一个广泛分布与土壤中的细菌门,其营养方式和代谢途径十分丰富,参与大量元素循环和分解过程,其广泛分布与活性污泥和堆肥等生境中[21]。芽单胞菌门是一类寡养土壤单胞菌,大量分布在逆境生境中,具有较强的分解能力[1]。本研究中,生活垃圾中含有大量的有毒重金属等物质,因此导致垃圾堆放土壤中绿弯菌门、芽单胞菌门含量增加。
在属水平,垃圾堆放条件下,土壤中Desulfatiglaus、Gemmatimondaceae、Ignavibacterium、Xanthomonadales显著升高。Gemmatimondaceae环境样品中的含量丰富的细菌属,该属的细菌通常具有较强的降解纤维素能力,而且还具有重要的降解芳香族化合物和重金属络合物的能力,通常分布在高温、盐碱等逆境土壤中,通常是生活垃圾填埋场环境中的优势属[22]。生活垃圾填埋条件下土壤中逆境微生物含量的增加,对于利用土壤中逆境微生物来进行土壤修复具有十分重要的作用,这种菌属可以为开发微生物菌剂提供了宝贵的微生物资源。但是同时笔者也发现,在属水平上,土壤中还含有大量未知和未分类的细菌,对于这些细菌分类和功能还需要未来进一步的研究。

4.3 垃圾堆放对土壤细菌功能的影响

目前虽然已经开展了一些针对于垃圾堆放条件下土壤细菌群落结构的研究[23,24],但是针对垃圾堆放条件下土壤细菌功能的研究缺仍然缺乏。本研究采用PICRUSt功能预测方式对垃圾堆放下土壤细菌功能进行了分析。结果表明,在一级代谢水平上,垃圾堆放和未堆放土壤细菌功能均以代谢功能为主,土壤细菌功能基因多样性差异不大,但是在基因功能的丰度上出现了一定差异,未堆放组要高于堆放组。
在二级功能代谢水平上主要是氨基酸代谢(Amino Acid Metabolism)和碳水化合物代谢(Carbohydrate Metabolism)途径,未堆放土壤高于垃圾堆放土壤0.29%和0.16%,这可能是因为生活垃圾堆放过程中土壤有益细菌发生改变,主要以逆境微生物为主,因此导致微生物功能的降低[25]。其中垃圾堆放土壤中的优势菌门中变形菌门具有降解动植物残体、固氮及参与单碳化合物代谢等功能[26]。在垃圾堆放组的优势菌属中,芽孢杆菌属是一类主要利用单糖、双糖、淀粉、有机酸等作为碳源和能源的细菌[27]。相较于未堆放土壤,垃圾堆放土壤细菌中膜运输、复制和修复、细胞运动的代谢增加幅度最大。虽然本研究利用PICRUST在线预测了土壤中细菌的功能,但是由于该方法只能对已知的微生物进行功能预测,而对于大量未知的微生物是无法进行分析的,因此在未来需要进一步采用宏基因组方法,更加深入的探讨垃圾堆放下土壤细菌功能的改变。

References

[1]
朱大奎, 王颖. 环境地质学[M]. 南京: 南京大学出版社: 2020:3-32.
[2]
蔡晓锋, 胡体旭, 叶杰, 等. 植物盐胁迫抗性的分子机制研究进展[J]. 华中农业大学学报, 2015, 34(3):134-141.
[3]
ISMAIL A, TAKEDA S, NICK P. Life and death under salt stress: same players, different timing?[J]. Journal of experimental botany, 2014(65):2963-2979.
[4]
SEWELAM N, OSHIMA Y, MITSUDA N, et al. A step towards understanding plant responses to multiple environmental stresses: a genome-wide study[J]. Plant cell and environment, 2014, 37(9):2024-2035.
[5]
TEAKLE N L, TYERMAN S D. Mechanisms of Cl-Transport contributing to salt tolerance[J]. Plant cell and environment, 2010(33):566-589.
[6]
付丽, 刘加珍, 陶宝先, 等. 盐生植物对盐渍土壤环境的适应机制研究综述[J]. 江苏农业科学, 2021, 49(15):32-39.
[7]
SUN J, HE L, LI T. Response of seedling growth and physiology of Sorghum bicolor (L.) moench to saline-alkali stress[J]. Plos one, 2019(14):e0220340.
[8]
LIN J, LI X, ZHANG Z, et al. Salinity-alkalinity tolerance in wheat: seed germination, early seedling growth, ion relations and solute accumulation[J]. African journal of biomedical research, 2012(7):467-474.
[9]
GUO R, YANG Z, LI F, et al. Comparative metabolic responses and adaptive strategies of wheat (Triticum aestivum) to salt and alkali stress[J]. BMC plant biology, 2015(15):170-175.
[10]
AHANGER M A, AZIZ U, ALSAHLI A A, et al. Influence of exogenous salicylic acid and nitric oxide on growth, photosynthesis, and ascorbate-glutathione cycle in salt stressed Vigna angularis[J]. Biomolecules, 2019(10):42-45.
[11]
NADARAJAH K K. ROS homeostasis in abiotic stress tolerance in plants[J]. International journal of molecular sciences, 2020(21):5208.
[12]
JIA W, WANG Y, ZHANG S, et al. Salt-stress-induced ABA accumulation is more sensitively triggered in roots than in shoots[J]. Journal of experimental botany, 2002(53):2201-2206.
[13]
VERMA V, RAVINDRAN P, KUMAR P P, Plant hormone-mediated regulation of stress responses[J]. BMC plant biology, 2016(16):1-10.
[14]
YANG C, GUO W, SHI D. Physiological roles of organic acids in alkali-tolerance of the alkali-tolerant halophyte Chloris virgata[J]. Agronomy journal, 2010(102):1081-1089.
[15]
HE X J, CHEN T, ZHU J K. Regulation and function of DNA methylation in plants and animals[J]. Cell research, 2011(21):442-465.
[16]
XIANG G, MA W, GAO S, et al. Transcriptomic and phosphoproteomic profiling and metabolite analyses reveal the mechanism of NaHCO3-induced organic acid secretion in grapevine roots[J]. BMC plant biology, 2019(19):383-390.
[17]
WANG X, GENG S, RI Y J, et al. Physiological responses and adaptive strategies of tomato plants to salt and alkali stresses[J]. Scientia horticulturae, 2011(130):248-255.
[18]
SHAH W H, RASOOL A, SALEEM S, et al. Understanding the integrated pathways and mechanisms of transporters, protein kinases, and transcription factors in plants under salt stress[J]. International journal of genomics, 2021:5578727.
[19]
Liu Q L, XU K D, ZHAO L J, et al. Overexpression of a novel chrysanthemum NAC transcription factor gene enhances salt tolerance in tobacco[J]. Biotechnology letters, 2011, 33(10):2073-2082.
[20]
LI Y, ZHANG H, ZHANG Q, et al. An AP2/ERF gene, IbRAP2-12, from sweetpotato is involved in salt and drought tolerance in transgenic Arabidopsis[J]. Plant science, 2019(281):19-30.
[21]
ZHANG L, XIE J, WANG L, et al. Wheat TabZIP8, 9, 13 participate in ABA biosynthesis in NaCl-stressed roots regulated by TaCDPK9-1[J]. Plant physiology and biochemistry, 2020(151):650-658.
[22]
李贵玲. 盐生植物耐盐机制概要及其在改良土壤中的作用[J]. 生物学通报, 2020, 55(9):7-10.
[23]
袁芳, 杨剑超, 冯中涛, 等. 二色补血草盐腺泌盐及发育机理初步研究[C]. 2013全国植物生物学大会论文集, 2013:58.
[24]
吴欣欣, 白天惠, 张乐, 等. 泌盐盐生植物的泌盐机理研究进展[J]. 植物生理学报, 2020, 56(12):2526-2532.
[25]
杜秀敏, 殷文璇, 赵彦修, 等. 植物中活性氧的产生及清除机制[J]. 生物工程学报, 2001(2):121-125.
[26]
MATSUSHITA N, MATOH T. Characterization of Na+ exclusion mechanism of salt tolerant reed plants in comparision with salt sensitive rice plants[J]. Physiologia plantarum, 1991(83):170-176.
[27]
SCHIEFELBEIN J W, BENFEY P N. The development of plant roots: new approaches to underground problems[J]. Plant cell, 1991(3):1147-1153.
[28]
陈万超. 三种经济植物抗碱生理机制研究[D]. 长春: 东北师范大学, 2011:7-14.
[29]
李彦, 张英鹏, 孙明, 等. 盐分胁迫对植物的影响及植物耐盐机理研究进展[J]. 中国农学通报, 2008(1):258-265.
[30]
刘鑫, 王沛, 周青平. 植物根系质外体屏障研究进展[J]. 植物学报, 2021, 56(6):761-773.
根是植物吸收水分和矿质营养以维持生命活动的重要器官。根系的构型和超微结构具有物种特异性, 对水分和矿质营养的吸收有不同程度的影响。其中, 内、外皮层的木栓层和凯氏带是2种重要的质外体屏障, 可非定向地阻断水分和离子运输, 在植物生长发育及响应逆境胁迫中发挥重要作用。尽管如此, 植物根系质外体屏障的结构、化学组成、生理功能、生物合成及其调控仅在模式植物拟南芥(Arabidopsis thaliana)中被广泛研究。近年来, 关于作物大麦(Hordeum vulgare)、水稻(Oryza sativa)以及部分牧草的根系质外体屏障研究报道逐渐增多。该文系统比较了拟南芥、大麦、水稻以及部分牧草根系质外体屏障的异同, 提出今后的研究方向, 以期为深入探索禾本科作物和牧草根系质外体屏障在生长发育和逆境适应中的作用奠定理论基础, 并为作物和牧草育种工作提供新思路。
[31]
ENSTONE D E, PETERSON C A, MA F. Root endodermis and exodermis: structure, function and responses to the environment[J]. Journal of plant growth regulation, 2003(21):335-351.
[32]
MA F, PETERSON C A. Current insights into the development, structure and chemistry of the endodermis and exodermis of roots[J]. Canadian journal of botany, 2003(81):405-421.
[33]
LAUCHLI A, JAMES R A, HUANG C X, et al. Cell-specific localization of Na+ in roots of durum wheat and possible control points for salt exclusion[J]. Plant cell and environment, 2008(31):1565-1574.
[34]
ZHU J K. Salt and drought stress signal transduction in plants[J]. Annual review of plant biology, 2002, 53(1):247-273.
[35]
汪攀, 陈奶莲, 邹显花, 等. 植物根系解剖结构对逆境胁迫响应的研究进展[J]. 生态学杂志, 2015, 34(2):550-556.
通过对皮层组织、凯氏带、维管柱等根系主要解剖组织结构在逆境条件下发生的一系列适应性变化进行综合论述,揭示植物根系通过调节甚至改变自身结构特征以应对各种逆境,提出今后应从逆境条件变化的角度开展植物根系解剖结构的形态可塑性研究,同时结合形态、解剖及生理代谢指标,建立抗逆性品种筛选指标体系。&nbsp;
[36]
WALKER R R, SEDGLEY M, BLESING M A, et al. Ultrastructure and assimilate concentrations of roots of citrus genotypes differing in ability for salt exclusion[J]. Journal of experimental botany, 1984(35):1481-1494.
[37]
FRANKE R, SCHREIBER L. Suberin-a biopolyester forming apoplastic plant interfaces[J]. Current opinion in plant biology, 2007(10):252-259.
[38]
高丽, 杨海莉, 王沛, 等. 木栓质及其生理功能[J]. 草业科学, 2018, 35(5):1218-1231.
[39]
高丽. CYP86A1在拟南芥响应干旱胁迫中的作用研究[D]. 兰州: 兰州大学, 2018:14-30.
[40]
KOLATTUKUDY P E. Advances in biochemical engineering/biotechnology[J]. Polyesters in higher plants, Springer, 2001(71):1-49.
[41]
GRACA J, PEREIRA H. Suberin structure in potato periderm: Glycerol, long-chain monomers, and glyceryl and feruloyl dimers[J]. Journal of agricultural and food chemistry, 2000, 48(11):5476-5483.
Suberin in extractive-free potato periderm amounts to approximately 25% determined by NaOCH(3) methanolysis. Monomeric composition is characterized by glycerol (20% of monomers), long-chain alpha, omega-diacids, omega-hydroxyacids, alkanoic acids, and alkan-1-ols, with predominance of octadec-9-enodioic acid and 18-hydroxyoctadec-9-enoic acid (39 and 15% of long-chain monomers, respectively). Aromatic hydroxycinnamyl monomers were also present (<1%). Partial depolymerization of potato periderm suberin using a Ca(OH)(2)-catalyzed methanolysis solubilized approximately 10% of suberin aliphatics. GC-MS analysis showed the presence of monomers, dimers, and trimers (87, 12, and 1% of identified compounds, respectively). A total of 26 dimers were identified by EIMS: monoacylglyceryl esters of alpha,omega-diacids, omega-hydroxyacids, and alkanoic acids (with predominance of the 1- and 2-isomers of the monoacylglyceryl ester of the octadec-9-enodioic acid), as well as feruloyl esters of omega-hydroxyacids and alkan-1-ols and a small quantity of a monoferuloylglycerol. Following a discussion of suberin macromolecular structure, it is proposed that in suberized cell walls, the polyaliphatic polymers have a three-dimensional development ensured by glycerol and exist independently from the associated polyaromatics.
[42]
王沛. 木栓质合成关键基因CYP86A在植物抵御盐胁迫中的作用研究[D]. 兰州: 兰州大学, 2017:15-27.
[43]
崔亚宁, 满奕, 宋程威, 等. 植物凯氏带化学成分、生理功能及相关调控机制的研究进展[J]. 中国科学:生命科学, 2020, 50(2):102-110.
[44]
蔡霞, 吴小琴, 周庆源, 等. 植物内皮层凯氏带及其在抗盐胁迫中的作用[J]. 电子显微学报, 2011, 30(6):533-540.
[45]
ROPPOLO D, DE R B, DENERVAUD T V, et al. A novel protein family mediates casparian strip formation in the endodermis[J]. Nature, 2011(473):380-383.
[46]
YAN Z, LEI L. Are cuproproteins part of the multi-protein framework for making the Casparian strip?[J]. Plant signaling & behavior, 2020(15):10,1798605.
[47]
GELDNER N. The endodermis[J]. Annual review of plant biology, 2013(64):531-558.
[48]
ROMEO D, TROIA A, BURGARELLA C, et al. Casparian strips in the leaf intrastelar canals of isoetes duriei bory, a mediterranean terrestrial species[J]. Annals of botany, 2000, 86(5):1051-1054.
[49]
吴小琴, 朱锦懋, 王钦丽, 等. 植物凯氏带的研究进展[J]. 植物学通报, 2002, 19(3):302-309.
[50]
吴小琴, 张奠湘, 胡玉熹, 等. 白皮松针叶内皮层在盐胁迫中的屏障作用研究[J]. 热带亚热带植物学报, 2007, 15(3):203-208.
[51]
LERSTEN N R. Occurrence of endodermis with a casparian strip in stem and leaf[J]. Botanical review, 1997(63):265-272.
[52]
KARAHARA I, IKEDA A, KONDOO T, et al. Development of the Casparian strip in primary roots of maize under salt stress[J]. Planta, 2004(219):41-47.
[53]
NAGAHASHI G, THOMSON W W, LEONARD R T. The Casparian strip as a barrier to the movement of lanthanum in corn roots[J]. Science, 1974, 183(4125):670-671.
The effectiveness of the Casparian strip as a barrier to apoplastic movement of solutes from cortex to stele of corn roots was investigated by using lanthanum in combination with electron microscopy. Lanthanum deposits were found only in cell walls and on the outside of the plasma membrane of epidermal, cortical, and endodermal cells up to the Casparian strip. Lanthanum was completely absent from the stele, indicating that the Casparian strip provides an effective barrier to apoplastic movement of solutes. Inhibitory effects of trivalent lanthanum ions on the absorption of potassium ions are discussed in relation to the nature of the lanthanum ion binding site on membranes.
[54]
ZHI C C, NAOKI Y, TOMOAKI H, et al. A Magnesium transporter OsMGT1 plays a critical role in salt tolerance in rice[J]. Plant physiology, 2017, 174(3):1837-1849.
Salt stress is one of the major factors limiting rice () production globally. Although several transporters involved in salt tolerance have been identified in rice, the mechanisms regulating their transport activity are still poorly understood. Here, we show evidence that a rice Mg transporter OsMGT1 is required for salt tolerance probably by regulating transport activity of OsHKT1;5, a key transporter for the removal of Na from the xylem sap at the root mature zone. Knockout of did not affect total Na uptake, but increased Na concentration in the shoots and xylem sap, resulting in a significant increase in salt sensitivity at low external Mg concentration (20-200 μm). However, such differences were abolished at a higher Mg concentration (2 mm), although the total Na uptake was not altered. was expressed in both the roots and shoots, but only that in the roots was moderately up-regulated by salt stress. Spatial expression analysis revealed that was expressed in all root cells of the root tips but was highly expressed in the pericycle of root mature zone. was also expressed in the phloem region of basal node, leaf blade, and sheath. When expressed in oocytes, the transport activity of OsHKT1;5 was enhanced by elevating external Mg concentration. Furthermore, knockout of in mutant background did not further increase its salt sensitivity. Taken together, our results suggest that Mg transported by OsMGT1 in the root mature zone is required for enhancing OsHKT1;5 activity, thereby restricting Na accumulation to the shoots.© 2017 American Society of Plant Biologists. All Rights Reserved.
[55]
ANDRE L, RICHARD A J, Cheng X, et al. Cell-specific localization of Na+ in roots of durum wheat and possible control points for salt exclusion[J]. Plant cell and environment, 2008(31):1565-1574.
[56]
马文月. 植物抗盐性研究进展[J]. 农业与技术, 2004(4):95-99.
[57]
王宝山, 赵可夫, 邹琦. 作物耐盐机理研究进展及提高作物抗盐性的对策[J]. 植物学通报, 1997(S1):26-31.
[58]
李晓院, 解莉楠. 盐胁迫下植物Na+调节机制的研究进展[J]. 生物技术通报, 2019, 35(7):148-153.
盐胁迫是限制农作物生产的主要非生物因素之一。土壤中过量的可溶性盐(主要指Na<sup>+</sup>)可使植物受到渗透胁迫、离子胁迫和氧化胁迫等次生胁迫。在高盐环境下,植物通过Na<sup>+</sup>外排或胞内区隔化等策略来降低胞内Na<sup>+</sup>浓度,进而重建或维持植物体内的离子稳态平衡。主要综述了盐胁迫下植物细胞维持Na<sup>+</sup>离子动态平衡的主要途径和调控机制的最新进展。对盐胁迫下离子动态平衡过程的深入了解将有助于创制更高耐逆性的作物品种,实现农业的可持续发展。
[59]
SHI H, QUINTERO F J, PARDO J M, et al. The putative plasma membrane Na+/H+ antiporter SOS1 controls long-distance Na+transport in plants[J]. Plant cell, 2002(14):465-477.
[60]
El MAHI H, PEREZ H J, DE L A, et al. A critical role of sodium flux via the plasma membrane Na+/H+ exchanger SOS1 in the salt tolerance of rice[J]. Plant physiology, 2019(180):1046-1065.
[61]
ZHU J K. Abiotic stress signaling and responses in plants[J]. Cell, 2016(167):313-324.
[62]
SHI H, ISHITANI M, KIM C, et al. The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter[J]. Proceedings of the national academy of sciences of the United States of America, 2000(97):6896-6901.
[63]
QIU Q S, GUO Y, DIETRICH M A, et al. Regulation of SOS1 a plasma membrane Na+/H+ exchanger in Arabidopsis thaliana, by SOS2 and SOS3[J]. Proceedings of the national academy of sciences of the United States of America, 2002(99):8436-8441.
[64]
ZHOU Y, YIN X, WAN S, et al. The Sesuvium portulacastrum plasma membrane Na+/H+ antiporter SpSOS1 complemented the salt sensitivity of transgenic Arabidopsis sos1 mutant plants[J]. Plant molecular biology reporter, 2018(36):553-563.
[65]
KATIYAR A S, ZHU J, KIM K, et al. The plasma membrane Na+/H+ antiporter SOS1 interacts with RCD1 and functions in oxidative stress tolerance in Arabidopsis[J]. Proceedings of the national academy of sciences of the United States of America, 2006(103):18816-18821.
[66]
YU L, NIE J, CAO C, et al. Phosphatidic acid mediates salt stress response by regulation of MPK6 in Arabidopsis thaliana[J]. New phytologist, 2010(188):762-773.
[67]
MASER P, THOMINE S, SCHROEDER J I, et al. Phylogenetic relationships within cation transporter families of Arabidopsis[J]. Plant physiology, 2001, 126(4):1646-1667.
Uptake and translocation of cationic nutrients play essential roles in physiological processes including plant growth, nutrition, signal transduction, and development. Approximately 5% of the Arabidopsis genome appears to encode membrane transport proteins. These proteins are classified in 46 unique families containing approximately 880 members. In addition, several hundred putative transporters have not yet been assigned to families. In this paper, we have analyzed the phylogenetic relationships of over 150 cation transport proteins. This analysis has focused on cation transporter gene families for which initial characterizations have been achieved for individual members, including potassium transporters and channels, sodium transporters, calcium antiporters, cyclic nucleotide-gated channels, cation diffusion facilitator proteins, natural resistance-associated macrophage proteins (NRAMP), and Zn-regulated transporter Fe-regulated transporter-like proteins. Phylogenetic trees of each family define the evolutionary relationships of the members to each other. These families contain numerous members, indicating diverse functions in vivo. Closely related isoforms and separate subfamilies exist within many of these gene families, indicating possible redundancies and specialized functions. To facilitate their further study, the PlantsT database (http://plantst.sdsc.edu) has been created that includes alignments of the analyzed cation transporters and their chromosomal locations.
[68]
HORIE T, HAUSER F, SCHROEDER J I. HKT transporter-mediated salinity resistance mechanisms in Arabidopsis and monocot crop plants[J]. Trends in plant science, 2009, 14(12):660-668.
[69]
ABBASI H, JAMIL M, HAQ A, et al. Salt stress manifestation on plants, mechanism of salt tolerance and potassium role in alleviating it: a review[J]. Zemdirbyste, 2016, 103(2):229-238.
[70]
KRISHNAMURTHY P, RANATHUNGE K, NAYAK S, et al. Root apoplastic barriers block Na+ transport to shoots in rice[J]. Journal of experimental botany, 2011(62):4215-4228.
[71]
WANG P, WANG C M, GAO L, et al. Aliphatic suberin confers salt tolerance to Arabidopsis by limiting Na+ influx, K+ efflux and water backflow[J]. Plant, soil and environment, 2020(448):603-620.
[72]
BLUMWALD E. Sodium transport and salt tolerance in plants[J]. Current opinion in cell biology, 2000(12):431-434.
[73]
APSE M P, BLUMWALD E. Na+ transport in plants[J]. FEBS letters, 2007(581):2247-2254.
[74]
BOWERS K, LEVI B, PATEL F, et al. The sodium/proton exchanger Nhx1p is required for endosomal protein trafficking in the yeast Saccharomyces cerevisiae[J]. Molecular biology of the cell, 2000(11):4277-4294.
[75]
CHANROJ S, WANG G, VENEMA K, et al. Conserved and diversified gene families of monovalent cation/H+ antiporters from algae to flowering plants[J]. Frontiers in plant science, 2012, 3:25.
[76]
李茹霞, 顾寅钰, 李萌, 等. 菠菜NHX家族基因鉴定及其响应盐胁迫的表达分析[J]. 山东农业科学, 2021, 53(9):1-7.
[77]
APSE M P, AHARON G S, SNEDDEN W A, et al. Salt tolerance conferred by overexpression of a vacuolar Na+ /H+ antiport in Arabidopsis[J]. Science, 1999(285):1256-1258.
[78]
BARRAGAN V, LEIDI E O, ANDRES Z, et al. Ion exchangers NHX1 and NHX2 mediate active potassium uptake into vacuoles to regulate cell turgor and stomatal function in Arabidopsis[J]. Plant cell, 2012(24):1127-1142.
[79]
MAKOTO O, SACHIKO F T, ATSUSHI H, et al. Characterization of a novel Na+ /H+ antiporter gene InNHX2 and comparison of InNHX2 with InNHX1, which is responsible for blue flower coloration by increasing the vacuolar pH in the Japanese morning glory[J]. Plant cell physiology, 2005, 46(2):259-267.
[80]
PARK H J, KIM W Y, YUN A D. New insight of salt stress signaling in plant[J]. Molecular cell, 2016(39):447-459.
[81]
FUKUDA A, NAKAMURA A, TAGIRI A, et al. Function, intracellular localization and the importance in salt tolerance of a vacuolar Na+ /H+ antiporter from rice[J]. Plant cell physiology, 2004(45):146-159.
[82]
FUKUDA A, CHIBA K, MAEDA M, et al. Effect of salt and osmotic stresses on the expression of genes for the vacuolar H+-pyrophosphatase, H+-ATPase subunit A, and Na+ /H+ antiporter from barley[J]. Journal of experimental botany, 2004(55):585-594.
[83]
ZHANG H X, BLUMWALD E. Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit[J]. Nature biotechnology, 2001(19):765-768.
[84]
KRONZUCKER H J, BRITTO D T. Sodium transport in plants: a critical review[J]. New phytologist, 2011(189):54-81.
[85]
YOSHIDA K, MIKI N, Momonoi K, et al. Synchrony between flower opening and petal-color change from red to blue in morning glory, Ipomoea tricolor cv. heavenly blue[J]. Proceedings of the Japan academy series B, 2009, 85(6):187-197.
[86]
BASSIL E, OHTO M A, ESUMI T, et al. The Arabidopsis intracellular Na+/H+ antiporters NHX5 and NHX6 are endosome associated and necessary for plantgrowth and development[J]. Plant cell, 2011, 23(1):224-239.
Intracellular Na+/H+ antiporters (NHXs) play important roles in cellular pH and Na+ and K+ homeostasis in all eukaryotes. Based on sequence similarity, the six intracellular Arabidopsis thaliana members are divided into two groups. Unlike the vacuolar NHX1-4, NHX5 and NHX6 are believed to be endosomal; however, little data exist to support either their function or localization. Using reverse genetics, we show that whereas single knockouts nhx5 or nhx6 did not differ from the wild type, the double knockout nhx5 nhx6 showed reduced growth, with smaller and fewer cells and increased sensitivity to salinity. Reduced growth of nhx5 nhx6 was due to slowed cell expansion. Transcriptome analysis indicated that nhx5, nhx6, and the wild type had similar gene expression profiles, whereas transcripts related to vesicular trafficking and abiotic stress were enriched in nhx5 nhx6. We show that unlike other intracellular NHX proteins, NHX5 and NHX6 are associated with punctate, motile cytosolic vesicles, sensitive to Brefeldin A, that colocalize to known Golgi and trans-Golgi network markers. We provide data to show that vacuolar trafficking is affected in nhx5 nhx6. Possible involvements of NHX5 and NHX6 in maintaining organelle pH and ion homeostasis with implications in endosomal sorting and cellular stress responses are discussed.
[87]
BASSIL E, BLUMWALD E. The ins and outs of intracellular ion homeostasis: NHX-type cation/H+ transporters[J]. Current opinion in plant biology, 2014(22):1-6.
[88]
ALMEIDA D M, OLIVEIRA M M, SAIBO N J. Regulation of Na+ and K+ homeostasis in plants: toward improved salt stress tolerance in crop plants[J]. Genetics and molecular research, 2017, 40(1):326-345.
[89]
YANG Y, GUO Y. Unraveling salt stress signaling in plants[J]. Journal of integrative plant biology, 2018(60):796-804.
[90]
ZHANG M, CAO Y, WANG Z, et al. A retrotransposon in an HKT1 family sodium transporter causes variation of leaf Na+ exclusion and salt tolerance in maize[J]. New phytologist, 2017(217):1161-1176.
[91]
YUICHI T. The HKT Transporter Gene from Arabidopsis, AtHKT1;1, is dominantly expressed in shoot vascular tissue and root tips and is mild salt stress-responsive[J]. Plants, 2019, 8(7):204.
The Arabidopsis high-affinity K+ transporter (AtHKT1;1) plays roles in salt tolerance by unloading Na+ from the root xylem to the xylem parenchyma cells and/or uploading Na+ from the shoot/leaf xylem to the xylem parenchyma cells. To use this promoter for the molecular breeding of salt-tolerant plants, I evaluated the expression profile of the AtHKT1;1 promoter in detail. Approximately 1.1 kbp of sequence upstream from the start codon of AtHKT1;1 was polymerase chain reaction (PCR)-amplified, fused to the β-glucuronidase (GUS) gene, and introduced into Arabidopsis. The resultant transformants were evaluated under nonstressed and salt-stress conditions at the seedling and reproductive stages. Histochemical analysis showed that GUS activity was detected in vascular bundle tissue in roots, hypocotyls, petioles, leaves, and petals, and in root tips. GUS enzyme activity in shoots tended to be higher than that in roots at both stages. After treatment with 50 mM NaCl for 24 h, GUS transcription levels and GUS enzyme activity were enhanced in transgenic lines. These results indicate that the AtHKT1;1 promoter isolated in this study could be useful in expressing transgenes specifically in vascular tissue and root tips, and in a mild salt-stress-responsive manner. The data provide novel insights into the functions of AtHKT1;1.
[92]
RIEDELSBERGER J, MILLER J K, VALDEBENITO M B, et al. Plant HKT channels: an updated view on structure, function and gene regulation[J]. International journal of molecular sciences, 2021, 22(4):1892.
HKT channels are a plant protein family involved in sodium (Na+) and potassium (K+) uptake and Na+-K+ homeostasis. Some HKTs underlie salt tolerance responses in plants, while others provide a mechanism to cope with short-term K+ shortage by allowing increased Na+ uptake under K+ starvation conditions. HKT channels present a functionally versatile family divided into two classes, mainly based on a sequence polymorphism found in the sequences underlying the selectivity filter of the first pore loop. Physiologically, most class I members function as sodium uniporters, and class II members as Na+/K+ symporters. Nevertheless, even within these two classes, there is a high functional diversity that, to date, cannot be explained at the molecular level. The high complexity is also reflected at the regulatory level. HKT expression is modulated at the level of transcription, translation, and functionality of the protein. Here, we summarize and discuss the structure and conservation of the HKT channel family from algae to angiosperms. We also outline the latest findings on gene expression and the regulation of HKT channels.
[93]
ZHANG M, LIANG X Y, WANG L M, et al. A HAK family Na+ transporter confers natural variation of salt tolerance in maize[J]. Nature plants volume, 2019(5):1297-1308.
[94]
李学文, 游西龙, 王艳. 钾离子转运载体HAK/KUP/KT家族参与植物耐盐性的研究进展[J]. 植物科学学报, 2019, 37(1):101-108.
[95]
游西龙. 两个HAK/KUP/KT成员的钾转运功能及耐盐性分析[D]. 乌鲁木齐: 新疆大学, 2018:15-21.
[96]
ADAMS E, SHIN R. Transport, signaling, and homeostasis of potassium and sodium in plants[J]. Journal of integrative plant biology, 2014, 56(3): 231-249.
<p>Potassium (K<sup>+</sup>) is an essential macronutrient in plants and a lack of K<sup>+</sup> significantly reduces the potential for plant growth and development. By contrast, sodium (Na<sup>+</sup>), while beneficial to some extent, at high concentrations it disturbs and inhibits various physiological processes and plant growth. Due to their chemical similarities, some functions of K<sup>+</sup> can be undertaken by Na<sup>+</sup> but K<sup>+</sup> homeostasis is severely affected by salt stress, on the other hand. Recent advances have highlighted the fascinating regulatory mechanisms of K<sup>+</sup> and Na<sup>+</sup> transport and signaling in plants. This review summarizes three major topics: (i) the transport mechanisms of K<sup>+</sup> and Na<sup>+</sup> from the soil to the shoot and to the cellular compartments; (ii) the mechanisms through which plants sense and respond to K<sup>+</sup> and Na<sup>+</sup> availability; and (iii) the components involved in maintenance of K<sup>+</sup>/Na<sup>+</sup> homeostasis in plants under salt stress.</p><p>Adams E, Shin R (2014) Transport, signaling, and homeostasis of potassium and sodium in plants. <strong>J Integr Plant Biol</strong> 56: 231&ndash;249. doi: 10.1111/jipb.12159</p>
[97]
WANI S H, KUMAR V, KHARE T, et al. Engineering salinity tolerance in plants: progress and prospects[J]. Planta, 2020, 251(4):1-29.
[98]
LISKA D, MARTINKA M, KOHANOVA J, et al. Asymmetrical development of root endodermis and exodermis in reaction to abiotic stresses[J]. Annals of botany, 2016, 118:667-674.
Background and Aims In the present study, we show that development of endodermis and exodermis is sensitively regulated by water accessibility. As cadmium (Cd) is known to induce xeromorphic effects in plants, maize roots were exposed also to Cd to understand the developmental process of suberin lamella deposition in response to a local Cd source. Methods In a first experiment, maize roots were cultivated in vitro and unilaterally exposed to water-containing medium from one side and to air from the other. In a second experiment, the roots were placed between two agar medium layers with a strip of Cd-containing medium attached locally and unilaterally to the root surface. Key Results The development of suberin lamella (the second stage of exodermal and endodermal development) started asymmetrically, preferentially closer to the root tip on the side exposed to the air. In the root contact with Cd in a spatially limited area exposed to one side of the root, suberin lamella was preferentially developed in the contact region and additionally along the whole length of the root basipetally from the contact area. However, the development was unilateral and asymmetrical, facing the treated side. The same pattern occurred irrespective of the distance of Cd application from the root apex. Conclusions These developmental characteristics indicate a sensitive response of root endodermis and exodermis in the protection of vascular tissues against abiotic stresses.© The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
[99]
杨朝东, 张霞, 刘国锋, 等. 植物根中质外体屏障结构和生理功能研究进展[J]. 植物研究, 2013, 33(1):114-119.
综述了近10年来植物根中质外体屏障结构和功能的研究进展。质外体屏障指根中内、外皮层初生壁的凯氏带,或次生壁栓质化和木质化,以及植物体表角质层组成的保护组织,能隔绝水、离子和氧气不能自由进出植物体的屏障结构,具有保护植物体的生理功能。根中凯氏带的分子发育机理研究表明根内皮层类似哺乳动物上皮组织的保护作用。植物根中质外体保证内部各种生理代谢在稳定的内部环境中进行,是植物适应各种逆境的重要屏障结构。根中质外体屏障在植物适应干旱、洪涝灾害、离子胁迫和病虫害的侵袭等方面具有重要作用,在探索适应并修复极端生态环境的植物资源中有广阔的应用前景。
[100]
LIU Y, YU L, QU Y, et al. GmSALT3, which confers improved soybean salt tolerance in the field, increases leaf Cl-exclusion prior to Na+ exclusion but does not improve early vigor under salinity[J]. Frontiers in plant science, 2016(7):1485.
Share on Mendeley
PDF(1373 KB)

Accesses

Citation

Detail

Sections
Recommended

/