
Effects of Chlorella on Wheat Growth and Soil Properties
BIAN Jianwen, WANG Meng, LIU Baoyou, WANG Xueying, ZHANG Xingang, WANG Wenrui
Effects of Chlorella on Wheat Growth and Soil Properties
In order to study the potential of Chlorella as bio-fertilizer, potted wheat was used as the experimental material, and the effects of Chlorella on wheat growth and soil properties were analyzed under different concentrations. The results showed that irrigation with Chlorella at wheat root could improve the growth of wheat. The plant height was increased by 4.01%-11.99%, and the fresh weight of the aboveground part was increased by 16.01%-29.42%. In addition, the content of chlorophyll a was increased by 4.90%-80.72%, the content of chlorophyll b was increased by 9.38%, and the total content of chlorophyll was increased by 11.99%-48.56%. Meanwhile, soil qualities were improved under Chlorella treatment. The organic matter of soil was increased by 5.26%-6.93%, alkali-hydrolyzed nitrogen was increased by 2.89%-10.14%, available phosphorus was increased by 3.79%-13.11%, available potassium was increased by 6.63%-13.08%, and soil pH was increased by 0.46%-1.62%. In conclusion, the application of Chlorella can not only promote the growth and biomass increase of wheat, but also improve soil quality to a certain extent.
Chlorella / wheat growth / fertilizer effect / soil properties {{custom_keyword}} /
[1] |
石元亮, 王玲莉, 刘世彬, 等. 中国化学肥料发展及其对农业的作用[J]. 土壤学报, 2008, 45(5):852-864.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[2] |
范丙全. 我国生物肥料研究与应用进展[J]. 植物营养与肥料学报, 2017, 23(6):1602-1613.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[3] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[4] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[5] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[6] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[7] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[8] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[9] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[10] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[11] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[12] |
高俊凤. 植物生理学实验指导[M]. 北京: 高等教育出版社, 2006.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[13] |
鲍士旦. 土壤农化分析第3版[M]. 北京: 中国农业出版社, 2000.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[14] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[15] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[16] |
Plant biostimulants (PBs) attract interest in modern agriculture as a tool to enhance crop performance, resilience to environmental stress, and nutrient use efficiency. PBs encompass diverse organic and inorganic substances (humic acids and protein hydrolysates) as well as prokaryotes (e.g., plant growth promoting bacteria) and eukaryotes such as mycorrhiza and macroalgae (seaweed). Microalgae, which comprise eukaryotic and prokaryotic cyanobacteria (blue-green algae), are attracting growing interest from scientists, extension specialists, private industry and plant growers because of their versatile nature: simple unicellular structure, high photosynthetic efficiency, ability for heterotrophic growth, adaptability to domestic and industrial wastewater, amenability to metabolic engineering, and possibility to yield valuable co-products. On the other hand, large-scale biomass production and harvesting still represent a bottleneck for some applications. Although it is long known that microalgae produce several complex macromolecules that are active on higher plants, their targeted applications in crop science is still in its infancy. This paper presents an overview of the main extraction methods from microalgae, their bioactive compounds, and application methods in agriculture. Mechanisms of biostimulation that influence plant performance, physiology, resilience to abiotic stress as well as the plant microbiome are also outlined. Considering current state-of-the-art, perspectives for future research on microalgae-based biostimulants are discussed, ranging from the development of crop-tailored, highly effective products to their application for increasing sustainability in agriculture.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[17] |
Microalgae are attracting the interest of agrochemical industries and farmers, due to their biostimulant and biofertiliser properties. Microalgal biostimulants (MBS) and biofertilisers (MBF) might be used in crop production to increase agricultural sustainability. Biostimulants are products derived from organic material that, applied in small quantities, are able to stimulate the growth and development of several crops under both optimal and stressful conditions. Biofertilisers are products containing living microorganisms or natural substances that are able to improve chemical and biological soil properties, stimulating plant growth, and restoring soil fertility. This review is aimed at reporting developments in the processing of MBS and MBF, summarising the biologically-active compounds, and examining the researches supporting the use of MBS and MBF for managing productivity and abiotic stresses in crop productions. Microalgae are used in agriculture in different applications, such as amendment, foliar application, and seed priming. MBS and MBF might be applied as an alternative technique, or used in conjunction with synthetic fertilisers, crop protection products and plant growth regulators, generating multiple benefits, such as enhanced rooting, higher crop yields and quality and tolerance to drought and salt. Worldwide, MBS and MBF remain largely unexploited, such that this study highlights some of the current researches and future development priorities.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[18] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[19] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[20] |
边建文, 崔岩, 杨宋琪, 等. 微藻生物肥料的农业应用研究进展[J]. 中国土壤与肥料, 2020(5):1-9.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[21] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[22] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[23] |
Algae are a group of ubiquitous photosynthetic organisms comprising eukaryotic green algae and Gram-negative prokaryotic cyanobacteria, which have immense potential as a bioresource for various industries related to biofuels, pharmaceuticals, nutraceuticals and feed. This fascinating group of organisms also has applications in modern agriculture through facilitating increased nutrient availability, maintaining the organic carbon and fertility of soil, and enhancing plant growth and crop yields, as a result of stimulation of soil microbial activity. Several cyanobacteria provide nitrogen fertilization through biological nitrogen fixation and through enzymatic activities related to interconversions and mobilization of different forms of nitrogen. Both green algae and cyanobacteria are involved in the production of metabolites such as growth hormones, polysaccharides, antimicrobial compounds, etc., which play an important role in the colonization of plants and proliferation of microbial and eukaryotic communities in soil. Currently, the development of consortia of cyanobacteria with bacteria or fungi or microalgae or their biofilms has widened their scope of utilization. Development of integrated wastewater treatment and biomass production systems is an emerging technology, which exploits the nutrient sequestering potential of microalgae and its valorisation. This review focuses on prospects and challenges of application of microalgae in various areas of agriculture, including crop production, protection and natural resource management. An overview of the recent advances, novel technologies developed, their commercialization status and future directions are also included.Copyright © 2018 Elsevier Inc. All rights reserved.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[24] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[25] |
吴丽, 张高科, 陈晓国, 等. 生物结皮的发育演替与微生物生物量变化[J]. 环境科学, 2014, 35(4):1479-1485.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[26] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[27] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
Collection(s)
/
〈 |
|
〉 |