
Effects of Amendment on Heavy Metals in Moderately Alkaline Farmland Soil and Their Accumulation in Wheat Around Smelting Plants
LI Hongliang, FU Yuncong, YUAN Cui, ZHU Xiaolong, GUI Juan, DAI Qingyun, HE Junqiang, DENG Lin, LIU Daihuan
Effects of Amendment on Heavy Metals in Moderately Alkaline Farmland Soil and Their Accumulation in Wheat Around Smelting Plants
The effect of amendment 2,4,6-trimercaptotriazine trisodium (TMT) on the accumulation of heavy metals at the late growth stage of wheat in moderately alkaline farmland around the smelting plants were investigated through field experiments. The results showed that in the contaminated soil, adding w=0.10% (mass fraction) TMT55, after 60-240 days, the available cadmium (Cd) content of DTPA in soil was reduced by 18.50%-41.53% compared with that of the controlled, and the available lead (Pb) content of DTPA in soil was reduced by 21.06%-28.43%. Adding w=0.10% (mass fraction) TMT55 to the contaminated soil with available Cd content of 0.97 mg/kg, after 200 days, the Cd content of wheat root, stem and leaf decreased by 32.04%, 27.38%, and 35.39%, respectively, compared with those of the controlled; and after 240 days, the Cd content in wheat root, stem, leaf and grain decreased by 18.12%, 34.86%, 12.39% and 20.81%, respectively. Adding w=0.10% (mass fraction) TMT55 to the contaminated soil with available Pb content of 56.72 mg/kg, after 200 days, the Pb content of the wheat root, stem and leaf decreased by 26.84%, 23.84% and 29.32% compared with those of the controlled; and after 240 days, the Pb content in wheat root, stem, leaf and grain decreased by 14.34%, 46.36%, 19.29% and 42.40%, respectively. TMT55 could inhibit the accumulation of cadmium and lead in wheat at the late growth stage, and can be a potential material for the remediation of heavy metal contaminated alkaline farmland soil around smelting plants.
2,4,6-trimercaptotriazine trisodium (TMT) / around smelting plants / moderately alkaline farmland soil / amendment / wheat / cadmium / lead {{custom_keyword}} /
表1 土壤样品的微生物多样性指数 |
Sample | Sobs | Shannon | Simpson | Ace | Chao1 | Coverage/% |
---|---|---|---|---|---|---|
对照 | 1921.0±136.7a | 6.2±0.1a | 0.007±0.002a | 2242.7±127.3a | 2249.3±118.3a | 98±0.00a |
处理 | 1646.3±61.78b | 5.8±0.12b | 0.012±0.003a | 1906.1±66.1b | 1923.7±92.2b | 98±0.00a |
表2 土壤细菌群落功能丰度表 |
一级功能 | 二级功能 | C | 百分比/% | T | 百分比/% | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Metabolism | Amino Acid Metabolism | 2854091 | 10.47 | 2331140 | 10.18 | |||||||||
Metabolism | Carbohydrate Metabolism | 2670399 | 9.80 | 2206482 | 9.64 | |||||||||
Environmental Information Processing | Membrane Transport | 2604045 | 9.56 | 2383110 | 10.41 | |||||||||
Genetic Information Processing | Replication and Repair | 2021780 | 7.42 | 1708886 | 7.46 | |||||||||
Metabolism | Energy Metabolism | 1804503 | 6.62 | 1491229 | 6.51 | |||||||||
Unclassified | Poorly Characterized | 1398465 | 5.13 | 1172485 | 5.12 | |||||||||
Genetic Information Processing | Translation | 1301802 | 4.78 | 1122984 | 4.90 | |||||||||
Metabolism | Metabolism of Cofactors and Vitamins | 1245312 | 4.57 | 1025830 | 4.48 | |||||||||
Unclassified | Cellular Processes and Signaling | 1034875 | 3.80 | 871649 | 3.81 | |||||||||
Metabolism | Lipid Metabolism | 984298 | 3.61 | 804376 | 3.51 | |||||||||
Metabolism | Nucleotide Metabolism | 925572 | 3.40 | 774079 | 3.38 | |||||||||
Cellular Processes | Cell Motility | 911201 | 3.34 | 863550 | 3.77 | |||||||||
Metabolism | Xenobiotics Biodegradation and Metabolism | 778081 | 2.86 | 593932 | 2.59 | |||||||||
Unclassified | Genetic Information Processing | 735318 | 2.70 | 615411 | 2.69 | |||||||||
Genetic Information Processing | Folding, Sorting and Degradation | 708558 | 2.60 | 616715 | 2.69 | |||||||||
Unclassified | Metabolism | 700475 | 2.57 | 570276 | 2.49 | |||||||||
Metabolism | Glycan Biosynthesis and Metabolism | 627282 | 2.30 | 536108 | 2.34 | |||||||||
Environmental Information Processing | Signal Transduction | 617938 | 2.27 | 531786 | 2.32 | |||||||||
Genetic Information Processing | Transcription | 605085 | 2.22 | 496863 | 2.17 | |||||||||
一级功能 | 二级功能 | C | 百分比/% | T | 百分比/% | |||||||||
Metabolism | Metabolism of Terpenoids and Polyketides | 580423 | 2.13 | 467502 | 2.04 | |||||||||
Metabolism | Enzyme Families | 552628 | 2.03 | 462769 | 2.02 | |||||||||
Metabolism | Metabolism of Other Amino Acids | 499610 | 1.83 | 390798 | 1.71 | |||||||||
Metabolism | Biosynthesis of Other Secondary Metabolites | 279783 | 1.03 | 227262 | 0.99 | |||||||||
Cellular Processes | Cell Growth and Death | 162926 | 0.60 | 131388 | 0.57 | |||||||||
Human Diseases | Infectious Diseases | 116452 | 0.43 | 90288 | 0.39 | |||||||||
Organismal Systems | Endocrine System | 109991 | 0.40 | 90806 | 0.40 | |||||||||
Cellular Processes | Transport and Catabolism | 89898 | 0.33 | 70245 | 0.31 | |||||||||
Human Diseases | Neurodegenerative Diseases | 86995 | 0.32 | 68964 | 0.30 | |||||||||
Environmental Information Processing | Signaling Molecules and Interaction | 46054 | 0.17 | 34673 | 0.15 | |||||||||
Organismal Systems | Environmental Adaptation | 40935 | 0.15 | 35208 | 0.15 | |||||||||
Human Diseases | Cancers | 40283 | 0.15 | 26719 | 0.12 | |||||||||
Human Diseases | Metabolic Diseases | 23895 | 0.09 | 18772 | 0.08 | |||||||||
Organismal Systems | Nervous System | 22358 | 0.08 | 17221 | 0.08 | |||||||||
Organismal Systems | Immune System | 15163 | 0.06 | 12411 | 0.05 | |||||||||
Organismal Systems | Digestive System | 13605 | 0.05 | 8702 | 0.04 | |||||||||
Organismal Systems | Circulatory System | 11550 | 0.04 | 10397 | 0.05 | |||||||||
Human Diseases | Immune System Diseases | 10862 | 0.04 | 7727 | 0.03 | |||||||||
Organismal Systems | Excretory System | 10817 | 0.04 | 8228 | 0.04 | |||||||||
Human Diseases | Cardiovascular Diseases | 4608 | 0.02 | 1683 | 0.01 | |||||||||
Cellular Processes | Cell Communication | 54 | 0.00 | 36 | 0.00 | |||||||||
Organismal Systems | Sensory System | 18 | 0.00 | 12 | 0.00 |
[1] |
王洋洋, 李方方, 王笑阳, 等. 铅锌冶炼厂周边农田土壤重金属污染空间分布特征及风险评估[J]. 环境科学, 2019, 40(1):437-444.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[2] |
Surface soil samples from 36 sampling sites including different functional areas in seven districts of Shenyang, China were collected and analyzed. The results showed that the average concentrations of Cd, Cu, Pb and Zn in soil of Shenyang were up to 0.42, 51.26, 75.29 and 140.02mg/kg, respectively, which are much higher than their natural background values. Among the functional areas and administrative regions, the industrial regions and the Tiexi District displayed the highest metal concentrations. Pearson's correlation analysis showed that there existed close correlations among Cd, Cu, Pb and Zn (except for Cd-Cu) at 1% level. Principal Component Analysis (PCA) coupled with correlation between heavy metals revealed that heavy metal contamination might originate from traffic and industrial activities. The values of pollution index (PI) and integrated pollution index (IPI) indicated that metal pollution level was Pb>Cd>Zn>Cu, and Cd, Cu, Pb and Zn belong to moderate or high pollution level. Potential ecological risk indexes (RI) further indicated that Shenyang was suffering from serious metal contamination. These results are important for the development of proper management strategies to decrease non-point source pollution by various remediation practices in Shenyang, China.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[3] |
李崇, 李法云, 张营, 等. 沈阳市街道灰尘中重金属的空间分布特征研究[J]. 生态环境, 2008, 17(2):560-564.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[4] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[5] |
杜平. 铅锌冶炼厂周边土壤中重金属污染的空间分布及其形态研究[D]. 北京: 中国环境科学研究院, 2007.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[6] |
王利军, 卢新卫, 荆淇, 等. 宝鸡长青镇铅锌冶炼厂周边土壤重金属污染研究[J]. 农业环境科学学报, 2012, 31(2):325-330.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[7] |
佘娟娟, 赵世君, 杨柳, 等. 铅锌冶炼厂周边土壤重金属的空间分布特征研究[J]. 江西农业学报, 2014, 26(6):110-113.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[8] |
徐玉霞, 薛雷, 汪志华, 等. 关中西部某铅锌冶炼区周边耕地土壤重金属污染特征及评价[J]. 干旱地区农业研究, 2014, 32(2):251-256.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[9] |
朱志勇, 李友军, 郝玉芬, 等. 镉对小麦(Triticum aestivum)干物质积累、转移及籽粒产量的影响[J]. 农业环境科学学报, 2012, 31(2):252-258.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[10] |
张丙春, 王磊, 孟立红, 等. 镉胁迫下春小麦中镉的分布、富集及转移规律[J]. 生态学杂志, 2010, 29(12):2521-2524.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[11] |
姜丽娜, 邵云, 李春喜, 等. 镉在小麦植株体内的吸收、分配和累积规律研究[J]. 河南农业科学, 2004, 33(7):13-17.
通过大田试验,研究镉(Cd)在麦株中的吸收、分配和累积的动态变化规律.结果表明,小麦植株中较易富集Cd2+的部位是叶、根及废弃物,而籽粒中Cd2+水平较低;Cd2+是一种不可移动的元素,在衰老部位累积较多,不能被其他未衰老的器官重新利用;Cd2+吸收量与植株干物重增加量呈极显著的正相关(r=0.916* *),吸收速率与植株干物重增加量呈显著的正相关(r=0.800*);灌浆期和拔节-抽穗期是镉污染控制的关键时期,且Cd2+吸收量最高,Cd2+吸收速率也最大.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[12] |
The efficiencies of neutral salts, strong acids, and chelates were tested for extracting cadmium (Cd) from three paddy soils. The higher the selectivity of the cations of the added neutral salts toward soil adsorption sites, the lower the pH in the extracts and the more soil Cd could be extracted. In addition, soil carbon and nitrogen contents and mineral composition were closely associated with the amount of Cd extracted. Calcium chloride and iron(III) chloride were selected as wash chemicals to restore Cd-contaminated paddy soils in situ. Washing with calcium chloride led to the formation of Cd chloride complexes, enhancing Cd extraction from the soils. The washing also substantially decreased soil levels of exchangeable and acid-soluble Cd, which are the major forms of bioavailable Cd for rice (Oryza sativa L.). The optimum conditions for in situ soil washing were also determined for calcium chloride.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[13] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[14] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[15] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[16] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[17] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[18] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[19] |
解晓露, 袁毳, 朱晓龙, 等. 中碱性镉污染农田原位钝化修复材料研究进展[J]. 土壤通报, 2018, 49(5):1009-1015.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[20] |
2,4,6-Trimercaptotriazine, trisodium salt nonahydrate (TMT-55) is a commercial product that is widely used to chemically precipitate cadmium, lead, zinc and other heavy metals from wastewaters and contaminated natural waters. When mixed with aqueous solutions of TMT-55, aqueous solutions of either reagent-grade zinc, cadmium, or lead salts precipitate crystalline "Zn-TMT", amorphous or crystalline "Cd-TMT" or amorphous "Pb-TMT" (M3[S3C3N3]2.nH2O, where M=Cd2+, Pb2+, and Zn2+ and n> or = 0) that may eventually crystallize if stored in air. Laboratory aqueous leaching studies over 78-106 days using pH 3 HCl, distilled water (pH 6) and pH 9-10 NaOH evaluated the stability of the Cd-, Pb-, and Zn-TMT precipitates. Under pH 3 conditions, the amorphous Cd- and Pb-TMT compounds converted to their crystalline forms and amorphous Cd-TMT also crystallized in distilled water. Otherwise, no decomposition products were detected in the leached solid residues. When compared with the aqueous solubilities of corresponding sulfides and most hydroxides, the TMT compounds were significantly more soluble in distilled water and pH 3 HCl.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[21] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[22] |
张江生, 周康根, 姜科, 等. 新型TMT-硫酸铁固定剂对重金属污染土壤的修复研究[J]. 有色金属科学与工程, 2014, 5(2):10-14.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[23] |
符云聪, 朱晓龙, 袁毳, 等. 含硫材料对中碱性农田土壤镉的钝化效果[J]. 生态与农村环境学报, 2019, 35(10):1353-1360.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[24] |
符云聪, 赵瑰施, 张义, 等. 天然海泡石-二乙基二硫代氨基甲酸钠复合体对土壤中镉的钝化机制[J]. 环境污染与防治, 2018, 40(6):634-638.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[25] |
黎红亮, 杨洋, 陈志鹏, 等. 花生和油菜对重金属的积累及其成品油的安全性[J]. 环境工程学报, 2015, 9(5):2488-2494.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[26] |
符云聪, 赵瑰施, 张义, 等. 模拟酸雨淋溶下海泡石复合材料对污染土壤镉释放的影响[J]. 生态与农村环境学报, 2019, 35(2):242-247.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[27] |
陈杰, 刘洁, 李顺奇, 等. 几种硫化物对紫色土汞的稳定化效果及优化稳定条件[J]. 环境工程学报, 2018, 12(3):893-903.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[28] |
赵家印, 席运官, 代慧杰, 等. 钝化剂与有机肥配施对土壤有效态重金属及其在生菜中累积的影响[J]. 生态与农村环境学报, 2019, 35(11):1460-1467.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[29] |
罗远恒, 顾雪元, 吴永贵, 等. 钝化剂对农田土壤镉污染的原位钝化修复效应研究[J]. 农业环境科学学报, 2014, 33(5):890-897.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[30] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[31] |
李平, 王兴祥, 郎漫, 等. 改良剂对Cu、Cd污染土壤重金属形态转化的影响[J]. 中国环境科学, 2012, 32(7):1241-1249.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[32] |
符云聪, 朱晓龙, 袁毳, 等. 小麦对镉的吸收、富集及其镉污染预测研究进展[J]. 中国农学通报, 2020, 36(6):37-41.
本研究回顾和总结了国内外学者对小麦镉吸收和富集的特点,对比分析了小麦各部位镉的富集系数,小麦不同部位镉富集顺序为:根>叶>茎>籽粒。土壤镉安全阈值是保障小麦质量的重要指标,小麦籽粒中镉含量可以由土壤中总镉含量及pH值来预测。对3类不同浸提剂浸提的土壤有效态镉进行探讨,发现这些浸提剂浸提的土壤有效态镉含量与小麦镉含量间的相关性顺序为:络合剂类>中性盐类(CaCl<sub>2</sub>)>稀(弱)酸类。最后提出了结论和展望,以期为今后小麦镉污染预测提供重要的理论指导和思路。
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[33] |
胡艳玲, 李平, 齐学斌, 等. 不同清污轮灌模式下冬小麦对Cd敏感期分析[J]. 灌溉排水学报, 2016, 35(8):21-24.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[34] |
季书勤, 郭瑞, 王汉芳, 等. 河南省主要小麦品种重金属污染评价及镉吸收规律研究[J]. 麦类作物学报, 2006, 26(6):154-157.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[35] |
邱坤艳, 成永霞, 付燕利, 等. 冶炼企业周边大气降尘中重金属污染状况评价[J]. 环境保护科学, 2015, 41(4):43-45.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[36] |
赵多勇, 魏益民, 魏帅, 等. 小麦籽粒铅污染来源的同位素解析研究[J]. 农业工程学报, 2012, 28(8):258-262.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[37] |
蔡保松, 张国平. 大、小麦对镉的吸收、运输及在籽粒中的积累[J]. 麦类作物学报, 2002, 22(3):82-86.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[38] |
杨金康, 朱利楠, 杨秋云, 等. 硅钙镁肥和改性腐殖酸对土壤镉形态和小麦镉积累的影响[J]. 生态与农村环境学报, 2021, 37(6):808-816.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[39] |
周志云, 马文连, 周振, 等. 磷酸改性生物炭和氯混施对土壤铅形态及小麦铅吸收的影响[J]. 农业环境科学学报, 2018, 37(5):899-906.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |