Spatial Pattern Analysis of Forest Resources and Key Protected Wild Plants in Qingyazhai National Nature Reserve

SUN Meiting, LI Liangtao, WANG Qian, ZHANG Xiaohua, ZHAO Yanli

PDF(3872 KB)
PDF(3872 KB)
Chinese Agricultural Science Bulletin ›› 2023, Vol. 39 ›› Issue (8) : 27-36. DOI: 10.11924/j.issn.1000-6850.casb2022-0242

Spatial Pattern Analysis of Forest Resources and Key Protected Wild Plants in Qingyazhai National Nature Reserve

Author information +
History +

Abstract

Qingyazhai National Nature Reserve has rich forest resources and wild plant resources, which is a hotspot area of biodiversity research. The spatial pattern analysis of Qingyazhai National Nature Reserve has important value and significance for the protection of biodiversity at the regional scale. The geographical and natural conditions of Qingyazhai National Nature Reserve were analyzed by using the forest resource survey data in 2003, 2016 and 2020, and ArcGIS10.7 software, so as to obtain topographic factors, stand survey factors, spatial distribution pattern of key protected wild plants and suitable habitat distribution. Through overlapping analysis of the suitable habitat distribution and the spatial distribution of the richness of key protected wild plants, the hotspot areas of key protected wild plants were determined. The results show that Qingyazhai National Nature Reserve has a large area of forest land, mainly young age groups, and high plant diversity in the range of middle canopy density (0.4-0.6). There are 31 species of key protected wild plants in the reserve, including 5 species of national level II wild protected plants. There are two hotspot areas in the reserve, one is located in the northwest of the reserve, which is mainly distributed in Changshou village, Huangzhuang, Lianggou and Chaoyanggou; the other is in the central part of the reserve, located at the junction of Naogou, Houqu, Qugou, Qibugou and Muzuo village. The spatial pattern analysis provides a scientific basis for the study of plant resource richness and diversity in nature reserves, and also provides planning reference for the construction of key protected areas of wild plants in nature reserves.

Key words

Qingyazhai National Nature Reserve / GIS / forest resources / key protected wild plants / spatial pattern / hotspot analysis

Cite this article

Download Citations
SUN Meiting , LI Liangtao , WANG Qian , ZHANG Xiaohua , ZHAO Yanli. Spatial Pattern Analysis of Forest Resources and Key Protected Wild Plants in Qingyazhai National Nature Reserve. Chinese Agricultural Science Bulletin. 2023, 39(8): 27-36 https://doi.org/10.11924/j.issn.1000-6850.casb2022-0242

References

[1]
王国兵, 余泽平, 吴钦树, 等. 江西官山大型森林样地中珍稀植物及空间分布格局[J]. 南方林业科学, 2017, 45(4):4-7.
[2]
MCNEELY J A, MIllER K R, REID W V, et al. Conserving the World's Biological Diversity[M]. Conserving the world's biological diversity, 1990.
[3]
MORA C, SALE P F. Ongoing global biodiversity loss and the need to move beyond protected areas: a review of the technical and practical shortcomings of protected areas on land and sea[J]. Marine Ecology Progress Series, 2011,434 (Jul.28):251-266.
[4]
TILMAN D. Forecasting agriculturally driven global environmental change[J]. Science, 2001, 292(5515):281.
During the next 50 years, which is likely to be the final period of rapid agricultural expansion, demand for food by a wealthier and 50% larger global population will be a major driver of global environmental change. Should past dependences of the global environmental impacts of agriculture on human population and consumption continue, 10(9) hectares of natural ecosystems would be converted to agriculture by 2050. This would be accompanied by 2.4- to 2.7-fold increases in nitrogen- and phosphorus-driven eutrophication of terrestrial, freshwater, and near-shore marine ecosystems, and comparable increases in pesticide use. This eutrophication and habitat destruction would cause unprecedented ecosystem simplification, loss of ecosystem services, and species extinctions. Significant scientific advances and regulatory, technological, and policy changes are needed to control the environmental impacts of agricultural expansion.
[5]
黄志强, 陆林, 戴年华, 等. 江西省自然保护区发展布局空缺分析[J]. 生态学报, 2014, 34(11):3099-3106.
[6]
MYERS N. Threatened biotas: 'hot spots' in tropical forests[J]. Environmentalist, 1988, 8(3):187-208.
[7]
MYERS N, Mittermeier R A, Mittermeier C G, et al. Biodiversity hotspots for conservation priorities[J]. Nature, 2000, 403(6772):853-858.
[8]
王智, 蒋明康, 秦卫华. 中国生物多样性重点保护区评价标准探讨[J]. 生态与农村环境学报, 2007(3):93-96.
[9]
杨占. 本溪县国家重点保护野生植物分布空间、分布格局与热点地区分析[J]. 林业科技通讯, 2018(6):26-29.
[10]
周鑫, 黄治昊, 张孝然, 等. 京津冀地区自然植被保护与自然保护区布局研究[J]. 生态科学, 2017, 36(1):64-71.
[11]
王浩源. 邯郸市植物多样性分布及其管护研究[D]. 邯郸: 河北工程大学, 2018.
[12]
张殷波, 孟庆欣, 秦浩, 等. 太行山山地森林群落植物区系与地理格局——基于植物群落清查数据[J]. 应用生态学报, 2019, 30(10):3395-3402.
太行山区位于黄土高原与华北平原之间,是我国生物多样性保护的重要优先区之一.本文以广义太行山涉及的108个行政县域为研究区域,基于太行山山地森林群落植物清查数据,系统分析了太行山山地森林群落的科属特征、区系组成、植物多样性地理格局及其丰富度热点地区.结果表明: 调查的778个样地得到太行山山地森林群落种子植物共计100科447属963种,其中,裸子植物3科7属12种,被子植物97科440属951种,生活型以草本植物占优势(71.1%);科的分布区类型以热带分布(38%)和温带分布(24%)为主,属的分布区类型以温带成分占主导(68.7%);太行山山地森林群落植物多样性的水平分布格局呈由西南向东北逐渐递增的趋势,群落物种多样性与经纬度均呈正相关关系,但不同生活型植物的多样性格局不相一致,草本植物多样性与经纬度呈正相关,而木本植物多样性与经纬度则无明显相关性;在垂直梯度上,太行山山地森林群落植物丰富度呈单峰分布,集中分布在400~1800 m的低中海拔地带,在1000~1200 m丰富度最高;基于群落清查数据绘制太行山山地森林群落植物丰富度分布图,鉴别出小五台山、云台山、太岳山、王屋山、中条山等山地为植物丰富度热点地区,应列入太行山优先保护的重点规划区域.
[13]
姚连芳, 刘会超, 赵一鹏, 等. 河南太行山区野生珍稀濒危植物资源研究初报[J]. 中国农学通报, 2008(5):369-373.
[14]
国家级自然保护区河北武安青崖寨[J]. 河北林业, 2012(10):23.
[15]
梁世杰. 青崖寨自然保护区景观格局动态分析及驱动因素研究[D]. 邯郸: 河北工程大学, 2020.
[16]
中科院中国植物志委员会. 中国植物志[M]. 北京: 科学出版社, 1999.
[17]
河北植物志编辑委员会. 河北植物志[M]. 石家庄: 河北科学技术出版社, 1986.
[18]
河北省植物学会. 河北野生植物[M]. 保定: 河北大学出版社, 1992.
[19]
张晓丽. 河北南部太行山区珍稀濒危植物的调查研究[J]. 中国野生植物资源, 2007(1):25-28.
[20]
马福, 张建龙. 中国重点保护野生植物资源调查[M]. 北京: 中国林业出版社, 2009.
[21]
姚振生, 徐攀. 植物标本馆在植物多样性保护中的作用[C]. 中华中医药学会中药鉴定学术会议暨who中药材鉴定方法和技术研讨会, 2010.
[22]
环境保护部和中国科学院. 中国生物多样性红色名录-高等植物卷[R]. 北京: 环境保护部办公厅, 2013.
[23]
王惠, 董芳, 解伏菊. 基于GIS森林资源空间格局变化与经营决策分析[J]. 济南大学学报(自然科学版), 2010, 24(1):79-83.
[24]
查轩, 黄少燕, 陈世发. 退化红壤地土壤侵蚀与坡度坡向的关系——基于GIS的研究[J]. 自然灾害学报, 2010, 19(2):32-39.
[25]
郭明春, 汤超华. 基于DEM钱塘江流域上游地貌形态特征分析——以开化县为例[J]. 东华理工大学学报(自然科学版), 2021, 44(4):377-381.
[26]
RIZWAN M A. Forest Mapping by using RS and GIS Techniques[J]. Global journal of researches in engineering, 2011, 11(7-J):41-46.
[27]
欧江, 地地木古, 张时林, 等. 不同郁闭度华山松人工林林下灌木和草本多样性[J]. 四川林业科技, 2020, 41(6):56-63.
[28]
PANCHAL A, RAI N, SHARMA N K. Assessment of forest land degradation by remote Sensing and GIS: a case study of Jaisamand Wildlife Sanctuary, Udaipur (Rajasthan)[J]. Ecology, environment and conservation, 2021, 27(1):447-454.
[29]
陈文德, 张会敏, 姚文文, 等. 凉山山系国家重点保护野生植物热点分析[J]. 中国野生植物资源, 2021, 40(4):83-90.
Share on Mendeley
PDF(3872 KB)

Collection(s)

Zea mays L.

Accesses

Citation

Detail

Sections
Recommended

/