
Prediction of Rice Canopy SPAD Value Based on UAV Multispectral Images
TIANTing, ZHANGQing, XUWen
Prediction of Rice Canopy SPAD Value Based on UAV Multispectral Images
The aim of this study is to compare and screen SPAD estimation models of rice canopy, and to provide a basis for inversing SPAD value of rice by unmanned aerial vehicle (UAV) multispectral remote sensing. This paper used UAV to obtain the canopy multispectral images of rice at jointing stage, heading stage and milky maturity stage. Seven commonly used vegetation indices were selected and three regression methods were used to establish the SPAD value inversion model of rice leaves. The results showed that the vegetation indices with the highest correlation coefficient with SPAD value of rice leaves were different at different growth stages. GNDVI was the highest at jointing stage, CIGreen was the highest at heading stage, and CIRededge was the highest at milky maturity stage. The heading stage was the best inversion stage of SPAD value, and the model had good modeling precision and estimation effect. According to the accuracy test, multivariate linear regression model had relatively high modeling accuracy, and partial least squares regression had the best estimation effect. Thus, this research provides a new technology to supervise the growth information of rice and other crops. The experimental results can provide methods and reference for the real-time and nondestructive monitoring of rice growth.
rice / SPAD value / predictive model / unmanned aerial vehicle / multispectral remote sensing {{custom_keyword}} /
[1] |
田明璐, 班松涛, 常庆瑞, 等. 基于无人机成像光谱仪数据的棉花叶绿素含量反演[J]. 农业机械学报, 2016, 47(11):285-293.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[2] |
袁炜楠, 许童羽, 曹英丽, 等. 基于主基底分析降维方法的水稻冠层叶片叶绿素含量估算[J]. 浙江大学学报(农业与生命科学版), 2018, 44(4):423-430.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[3] |
刘涛, 张寰, 王志业, 等. 利用无人机多光谱估算小麦叶面积指数和叶绿素含量[J]. 农业工程学报, 2021, 37(19):65-72.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[4] |
王丹, 赵朋, 孙家波, 等. 基于无人机多光谱的夏玉米叶绿素含量反演研究[J]. 山东农业科学, 2021, 53(6):121-126,132
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[5] |
孟沌超, 赵静, 兰玉彬, 等. 基于无人机可见光影像的玉米冠层SPAD反演模型研究[J]. 农业机械学报, 2020, 51(S2):366-374.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[6] |
刘仕元, 梁晋, 王帅斌, 等. 基于无人机遥感的花生叶片叶绿素含量监测研究[J]. 花生学报, 2020, 49(2):21-27,35.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[7] |
陈鹏, 冯海宽, 李长春, 等. 无人机影像光谱和纹理融合信息估算马铃薯叶片叶绿素含量[J]. 农业工程学报, 2019, 35(11):63-74.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[8] |
贺英, 邓磊, 毛智慧, 等. 基于数码相机的玉米冠层SPAD遥感估算[J]. 中国农业科学, 2018, 51(15):2886-2897.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[9] |
周敏姑, 邵国敏, 张立元, 等. 无人机多光谱遥感反演冬小麦SPAD值[J]. 农业工程学报, 2020, 36(20):125-133.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[10] |
毛智慧, 邓磊, 孙杰, 等. 无人机多光谱遥感在玉米冠层叶绿素预测中的应用研究[J]. 光谱学与光谱分析, 2018, 38(9):2923-2931.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[11] |
赵小敏, 孙小香, 王芳东, 等. 水稻高光谱遥感监测研究综述[J]. 江西农业大学学报, 2019, 41(1):1-12.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[12] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[13] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[14] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[15] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[16] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[17] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[18] |
杨贵军, 李长春, 于海洋, 等. 农用无人机多传感器遥感辅助小麦育种信息获取[J]. 农业工程学报, 2015, 31(21):184-190.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[19] |
奚雪, 赵庚星. 基于无人机多光谱遥感的冬小麦叶绿素含量反演及监测[J]. 中国农学通报, 2020, 36(20):119-126.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[20] |
常潇月, 常庆瑞, 王晓凡, 等. 基于无人机高光谱影像玉米叶绿素含量估算[J]. 干旱地区农业研究, 2019, 37(1):66-73.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[21] |
魏青, 张宝忠, 魏征, 等. 基于无人机多光谱遥感的冬小麦冠层叶绿素含量估测研究[J]. 麦类作物学报, 2020, 40(3):365-372.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[22] |
田容才, 高志强, 周昆. 基于高光谱数据的晚籼稻品种剑叶SPAD值估测[J]. 中国稻米, 2021, 27(1):45-50.
本研究测定了长江中下游不同晚籼稻品种的剑叶SPAD值及反射光谱数据,分析了原始光谱及其变换数据与SPAD值的相关关系,建立了不同晚籼稻品种剑叶SPAD值估测模型,并采用平均偏差率对模型精度进行品种间验证。结果表明,水稻剑叶SPAD值与原始光谱的敏感波段位于710~720 nm之间,与一阶微分光谱的敏感波段为690~700 nm,各光谱参数中以红边幅值(Dr)的相关性最好,相关系数达0.6~0.8;在回归模型类型的选取上,指数模型和二次曲线模型的估测效果较优;715 nm处的原始光谱反射率建立的指数模型y=85.512e<sup>-2.392x</sup>的估测效果最好,进行品种间验证的平均偏差率最小,仅为5.01%。说明以单一晚籼稻品种叶片光谱参数建立的模型在品种间具有一定的适用性。
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[23] |
于丰华, 许童羽, 郭忠辉, 等. 基于红边优化植被指数的寒地水稻叶片叶绿素含量遥感反演研究[J]. 智慧农业, 2020, 2(1):77-86.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[24] |
田军仓, 杨振峰, 冯克鹏, 等. 基于无人机多光谱影像的番茄冠层SPAD预测研究[J]. 农业机械学报, 2020, 51(8):178-188.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[25] |
王庆, 车荧璞, 柴宏红, 等. 基于无人机影像的冠层光谱和结构特征监测甜菜长势[J]. 农业工程学报, 2021, 37(20):90-98.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[26] |
张新乐, 于滋洋, 李厚萱, 等. 东北水稻叶片SPAD遥感光谱估算模型[J]. 中国农业大学学报, 2020, 25(1):66-75.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
Collection(s)
/
〈 |
|
〉 |