Bacillus subtilis 262XY2' Bacterial Fertilizer: Effects on the Growth and Physiological Characteristics of Tomato Seedlings

AOYuan, YANGChengde, GUOZhuangyuan, CAIFengfeng, CUILingxiao

PDF(1245 KB)
PDF(1245 KB)
Chinese Agricultural Science Bulletin ›› 2023, Vol. 39 ›› Issue (3) : 42-48. DOI: 10.11924/j.issn.1000-6850.casb2022-0164

Bacillus subtilis 262XY2' Bacterial Fertilizer: Effects on the Growth and Physiological Characteristics of Tomato Seedlings

Author information +
History +

Abstract

The objectives of this study are to determine the optimal application concentration of Bacillus subtilis 262XY2' bacterial fertilizer and provide a theoretical basis for its practical application. Tomato and Bacillus subtilis 262XY2' bacterial fertilizer were used as test materials, and the growth and physiological indexes of tomato were determined by morphological observation and spectrophotometer determination. The results showed that 0.5%-2% bacterial fertilizer treatment had the best growth physiological indexes. The ratio of seedling emergence rate, plant height, stem diameter, leaf area, fresh and dry weight of aboveground and underground parts, strong seedling index, growth function, root-shoot ratio, the content of chlorophyll a and b, carotenoid content, root vigor and soluble protein content were 11.115%, 14.589%, 35.616%, 91.704%, 49.369%, 48.330%, 86.634%, 85.714%, 71.429%, 50.000%, 59.164%, 86.887%, 156.827%, 10.589%, 7.035% and 54.294% higher than those of CK, respectively, and the lowest value of relative conductivity after treatment at -20℃ and 40℃ were 6.483% and 3.116% lower than that of CK, respectively. In summary, the application of 0.5%-2% Bacillus subtilis 262XY2' bacterial fertilizer can promote tomato growth, and the 0.5% bacterial fertilizer treatment group has the most significant effect on tomato growth.

Key words

Bacillus subtilis 262XY2' bacterial fertilizer / tomato / growth-promoting effect / growth characteristics / physiological characteristics

Cite this article

Download Citations
AO Yuan , YANG Chengde , GUO Zhuangyuan , CAI Fengfeng , CUI Lingxiao. Bacillus subtilis 262XY2' Bacterial Fertilizer: Effects on the Growth and Physiological Characteristics of Tomato Seedlings. Chinese Agricultural Science Bulletin. 2023, 39(3): 42-48 https://doi.org/10.11924/j.issn.1000-6850.casb2022-0164

References

[1]
张丽敏. 番茄种植技术及病虫害防治要点[J]. 世界热带农业信息, 2020(12):39-40.
[2]
赵铭阳, 冉帆, 程馨, 等. 竹纤维微生物菌肥对番茄产量和品质的影响[J]. 安徽农学通报, 2019, 25(24):122-125.
[3]
冯传荣. 奥瑞根生物菌肥在番茄基质育苗上的应用效果研究[J]. 中国农技推广, 2013, 29(4):45-46.
[4]
于振莲. 微生物菌肥在农业生产中的价值和应用策略探究[J]. 南方农业, 2020, 14(8):189-190.
[5]
徐振桐, 冷如新. 阿姆斯生物肥对生菜产量和品质的影响[J]. 中国农学通报, 1999, 15(1):23-24,26.
[6]
何永梅, 陈胜文, 孔志强, 等. 生物菌肥的种类及功效[J]. 新农村, 2020(10):27-28.
[7]
赵海红. 微生物肥料作用及其在蔬菜生产中的应用[J]. 黑龙江农业科学, 2011(1):51-53.
[8]
曹恩巧, 侯宪文, 李光义, 等. 复合苗剂对盆栽番茄土壤理化性质及微生物活性的影响[J]. 生态环境学报, 2011, 20(5):875-880.
[9]
MEDINA A, JAKOBSEN I, VASSILEV N, et al. Fermentation of sugar beet waste by Aspergillus niger facilitates growth and P uptake of external mycelium of mixed populations of arbuscular mycorrhizal fungi[J]. Soil biology and biochemistry, 2007, 39(2):485-492.
[10]
王孝涛, 李淑芹, 许景钢, 等. 生物肥对大豆根际过氧化氢酶和脲酶活性的影响[J]. 东北农业大学学报, 2012, 43(5):96-99.
[11]
KHAN A L, WAQAS M, KANG S M, et al. Bacterial endophyte Sphingomona ssp. LK11 produces gibberellins and IAA and promotes tomato plant growth[J]. Journal of microbiology, 2014, 52(8):689-695.
[12]
阎淑珍, 杨启银, 陈育如. 复合微生物肥对植物土传病原真菌的抑制作用[J]. 中国生物防治, 2004, 20(1):49-52.
[13]
冯中红, 王玉琴, 杨成德, 等. 番茄细菌性叶斑病菌的拮抗菌筛选、鉴定及其拮抗性能评价[J]. 草业学报, 2015, 24(8):166-173.
[14]
刘治会, 杨成德, 金梦军, 等. 枯草芽胞杆菌262XY2´固体发酵条件优化及对马铃薯炭疽病的防治效果[J]. 中国生物防治学报, 2019, 35(4):586-596.
[15]
程艳, 吴春燕, 王娜, 等. 矮壮素基质浇灌法对番茄幼苗生长及理化指标的影响[J]. 东北农业科学, 2018, 43(6):40-43.
[16]
侯梦媛, 杨再强, 张曼义. 水分胁迫对设施番茄结果期叶片衰老特性和根系活力的影响[J]. 北方园艺, 2017(1):52-57.
[17]
张志良, 翟伟菁. 植物生理学实验指导(第3版)[M]. 北京: 高等教育出版社, 2003.
[18]
熊庆娥. 植物生理学实验教程[M]. 成都: 四川科学技术出版社, 2003.
[19]
李合生. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2000.
[20]
陈建勋, 王晓峰. 植物生理学实验指导(第二版)[M]. 广州: 华南理工大学出版社, 2006.
[21]
杨爽, 李海鹏, 杨培鑑, 等. 微生物菌肥对草莓水分利用效率和产量的影响[J]. 江苏农业科学, 2015, 43(3):147-148.
[22]
于会丽, 徐国益, 徐变变, 等. 施用生物菌肥对桃园土壤养分及微生物功能多样性的影响[J]. 干旱地区农业研究, 2020, 38(6):91-97.
[23]
谢东锋, 薛书浩, 曾钰婷, 等. 采前微生物菌肥处理连作土壤对番茄生长及抗性酶活性的影响[J]. 北方园艺, 2018(21):136-141.
[24]
谢东锋, 王国强, 谢荣, 等. 不同微生物菌肥处理连作土壤对黄瓜生长及防御性酶的影响[J]. 福建农业学报, 2018, 33(7):696-701.
[25]
金伊洙, 周雪颖, 张凤伟. “顺升农”生物菌肥对番茄秧苗质量的影响[J]. 吉林农业科技学院学报, 2016, 25(4):1-3.
[26]
王东, 秦舒浩, 曹莉, 等. 不同微肥及生物菌肥对西兰花生长、生理及光合特性的影响[J]. 甘肃农业大学学报, 2014, 49(3):43-46,52.
[27]
孙玉良, 曹齐卫, 张卫华, 等. 微生物菌肥对黄瓜幼苗生长及生理特性的影响[J]. 西北农业学报, 2012, 21(2):132-136.
[28]
陈颖洁. 不同浓度微生物菌肥对番茄种子发芽和苗期生长的影响[J]. 南方农业, 2020, 14(26):30-31,35.
[29]
杨陶陶, 倪国荣, 邵正英, 等. 生防链霉菌JD211对水稻秧苗形态和生理特征的影响[J]. 南方农业学报, 2015, 46(10):1805-1811.
[30]
何文, 刘金龙, 寇娟妮, 等. 黄赭色链霉菌固体菌剂的研制及其对小麦幼苗生长的影响[J]. 生物技术通报, 2017, 33(12):119-124.
为了提高黄赭色链霉菌SN16菌剂的生物稳定性,通过对其载体、保护剂和分散剂等助剂的用量进行优化,确定最佳配方,并采用盆栽试验研究其对小麦幼苗生长的影响。结果表明,黄赭色链霉菌SN16菌剂的最佳配方以重量百分比计为:黄赭色链霉菌SN16原粉20%,海藻酸钠溶液(1 mg/mL)24%,羧甲基纤维素钠溶液(10 mg/mL)24%,硅藻土32%。在此条件下,在4℃保存60 d后菌剂的生物量为2.45×108 CFU/g,常温保存下60 d后其生物量能达0.94×108 CFU/g。盆栽实验结果表明,与对照相比,施用1%浓度的黄赭色链霉菌SN16菌剂的小麦幼苗的株高、株鲜重和株干重分别提高了9.85%、57.90%、66.67%,均达到了显著水平(P0.05)。研究结果为农业生产提供一种新型的黄赭色链霉菌菌剂。
[31]
顾志光, 徐文凤, 范玲超, 等. 拮抗放线菌固态发酵菌剂及其盆栽促生效果[J]. 北方园艺, 2017(8):124-128.
Share on Mendeley
PDF(1245 KB)

291

Accesses

0

Citation

Detail

Sections
Recommended

/