
Effects of Long-term Intercropping and No-tillage on Soil Physical Properties and Crop Yield
LIUMin, ZHAOCai, FANHong, YINWen, FANZhilong, HUFalong, SUNYabin
Effects of Long-term Intercropping and No-tillage on Soil Physical Properties and Crop Yield
The long-term traditional film mulching farming system in the oasis irrigated area of northwest China has caused problems such as decreased stability of soil structure, excessive mulching film residue and deteriorated soil quality. This study explored the effect of no-tillage with film mulching of cereal-legume intercropping on soil physical properties and crop yield, aiming to provide theoretical support for mulching film residue reduction and soil quality improvement, as well as the optimization of tillage practices and crop planting modes. A field experiment was conducted in Hexi Oasis irrigated area from 2013 to 2020. The two factors, tillage practice and planting mode, were designed. The tillage practices included conventional tillage with film mulching (CT) and no-tillage with film mulching (NT); and the planting modes included monoculture of pea (P), monoculture of maize (M), and maize-pea intercropping (M//P). The related indicators concerning soil physical properties and crop yield were determined after maize harvest in 2019 and 2020. The results showed that: (1) there were significant differences in the content of ≥0.25 mm water-stable aggregates, mean weight diameter (MWD), soil bulk density and total soil porosity in 0-30 cm soil layer between NT and CT, compared with those of CT, the content of ≥0.25 mm water-stable aggregates, MWD and total soil porosity of NT increased by 2.02%-7.76%, 19.4%-26.0% and 1.97%-2.28%, respectively, and soil bulk density of NT decreased by 1.31%-1.57%; (2) compared with monoculture of pea and maize, maize-pea intercropping significantly increased the content of water-stable soil macro-aggregates by 12.60%-20.11% and 7.05%-11.55%, respectively, MWD increased by 9.61%-12.44% and 4.01%-8.01%, respectively, soil bulk density decreased by 2.97% and 1.98%, respectively, and soil porosity increased by 4.50% and 2.98%, respectively; (3) the tillage practice had no significant effect on crop yield, but planting mode had a significant effect on maize kernel yield, compared with monoculture of maize, maize-pea intercropping in unit area increased the yield of maize kernel by 29.41%-31.68% under NT, and by 31.92%-33.38% under CT. In summary, no-tillage with film mulching of cereal-legume intercropping was an effective agronomic measure to achieve the efficient utilization of resources, the reduction of mulching film residue pollution, the increase of crop yield and the improvement of the physical properties of farmland soil in oasis irrigated area.
intercropping / no-tillage with plastic film mulching / soil aggregate / soil bulk density / yield {{custom_keyword}} /
[1] |
罗珠珠, 黄高宝, 张仁陟, 等. 长期保护性耕作对黄土高原旱地土壤肥力质量的影响[J]. 中国生态农业学报, 2010, 18(3):458-464.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[2] |
宋日, 刘利, 吴春胜, 等. 土壤团聚体大小对大豆出苗和幼苗生长的影响[J]. 中国油料作物学报, 2009, 31(2):223-227.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[3] |
李潮海, 李胜利, 王群, 等. 下层土壤容重对玉米根系生长及吸收活力的影响[J]. 中国农业科学, 2005(8):1706-1711.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[4] |
郑存德, 依艳丽, 张大庚, 等. 土壤容重对高产玉米根系生长的影响及调控研究[J]. 华北农学报, 2012, 27(3):142-149.
不同土壤容重不同,其稳定性也不同。土壤容重的变化会引起土壤调节水、气、热能力的变化,提高土壤的自动调节能力可以使土壤肥力水平得以提高并满足植物对生长因子的持续需求。为研究土壤物理性质对玉米高产稳产的影响机理,以耕地棕壤为试验材料,采用盆栽方法,研究不同容重对玉米根系生长指标的影响,并进一步研究了施用不同有机肥量及模拟不同耕作深度对玉米根系生长的调控效果。结果表明:在设计容重范围内,容重增加,根系生长指标都表现为下降,容重大于1.2 g/m<sup>3</sup>时,不同处理根系生长指标差异显著;当容重大于1.3 g/cm<sup>3</sup>时,不同处理根系活力差异显著。施用有机肥对高容重土壤调控效果更好,有机质含量为4%与5%的处理差异减小,低容重土壤在所设计的有机质水平内调控效果也都较好。耕层厚度增加可以提高根系生长参数,但与对照相比,差异不显著。所以,对于紧实结构性较差的土壤,改善其调节能力应该通过增施有机肥的方法,紧实结构较好的土壤考虑使用耕翻的办法。
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[5] |
陈强,
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[6] |
张仁陟, 罗珠珠, 蔡立群, 等. 长期保护性耕作对黄土高原旱地土壤物理质量的影响[J]. 草业学报, 2011, 20(4):1-10.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[7] |
苏永中, 张珂, 刘婷娜, 等. 免耕旧膜再利用对玉米产量及灌溉水生产力的影响[J]. 农业资源与环境学报, 2016, 33(5):491-498.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[8] |
郭瑶, 陈桂平, 殷文, 等. 地膜玉米免耕轮作小麦的减水减氮效应[J]. 中国生态农业学报(中英文), 2021, 29(2):389-399.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[9] |
吴兵, 高玉红, 赵利, 等. 旧膜再利用方式对旱地胡麻干物质生产及水分利用效率的影响[J]. 中国生态农业学报, 2012, 20(11):1457-1463.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[10] |
王红丽, 马一凡, 侯慧芝, 等. 西北半干旱区玉米马铃薯轮作一膜两年用栽培技术[J]. 甘肃农业科技, 2015(2):86-88.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[11] |
樊志龙, 赵财, 刘畅, 等. 一膜两年用少耕轮作对水氮减投小麦产量形成的促进效应[J]. 中国农业科学, 2018, 51(19):3651-3662.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[12] |
赵德强, 李彤, 侯玉婷, 等. 玉米大豆间作模式下干物质积累和产量的边际效应及其系统效益[J]. 中国农业科学, 2020, 53(10):1971-1985.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[13] |
任旭灵, 滕园园, 王一帆, 等. 玉米间作豌豆种间竞争互补对少耕密植的响应[J]. 中国生态农业学报, 2019, 27(6):860-869.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[14] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[15] |
柴强, 胡发龙, 陈桂平. 禾豆间作氮素高效利用机理及农艺调控途径研究进展[J]. 中国生态农业学报, 2017, 25(1):19-26.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[16] |
丁磊, 柴强, 于爱忠, 等. 覆膜免耕对玉米间作豌豆农田土壤有机碳和氮的影响[J]. 西北农业学报, 2021, 30(8):1148-1156.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[17] |
陈立新. 土壤实验实习教程[M]. 哈尔滨: 东北林业大学出版社, 2005:51-55
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[18] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[19] |
刘孝义. 土壤物理及土壤改良研究法[M]. 上海: 上海科学技术出版社, 1982:1-2
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[20] |
谢钧宇, 曹寒冰, 孟会生, 等. 不同施肥措施及施肥年限下土壤团聚体的大小分布及其稳定性[J]. 水土保持学报, 2020, 34(3):274-281,290.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[21] |
李娟, 韩霁昌, 陈超, 等. 黄土高原丘陵沟壑区土地利用方式对土壤团聚体特征的影响[J]. 水土保持学报, 2017, 31(1):248-253,259.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[22] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[23] |
武均, 蔡立群, 罗迪, 等. 不同耕作措施对陇中黄土高原雨养农田土壤团聚体稳定性和C、N、P的影响[J]. 水土保持学报, 2014, 28(6):234-239.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[24] |
何如, 王立, 杨彩红, 等. 绿洲灌区种植模式对土壤物理性质与有机碳的影响[J]. 草原与草坪, 2020, 40(4):96-102.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[25] |
苑亚茹, 韩晓增, 李禄军, 等. 低分子量根系分泌物对土壤微生物活性及团聚体稳定性的影响[J]. 水土保持学报, 2011, 25(6):96-99.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[26] |
全国明, 章家恩, 严会超, 等. 免耕对稻田土壤肥力的影响研究进展[J]. 中国农学通报, 2005(9):266-269,278.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[27] |
王婷, 王强学, 李永梅, 等. 玉米大豆间作对作物根系及土壤团聚体稳定性的影响[J]. 云南农业大学学报(自然科学), 2021, 36(3):507-515.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[28] |
何如, 张双羽, 杨彩红, 等. 绿洲灌区不同耕作模式对土壤性质的影响[J]. 生态学杂志, 2020, 39(11):3890-3902.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[29] |
王婷, 李永梅, 王自林, 等. 间作对玉米根系分泌物及团聚体稳定性的影响[J]. 水土保持学报, 2018, 32(3):185-190.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[30] |
武均, 蔡立群, 齐鹏, 等. 不同耕作措施下旱作农田土壤团聚体中有机碳和全氮分布特征[J]. 中国生态农业学报, 2015, 23(3):276-284.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[31] |
孙涛, 冯晓敏, 赵财, 等. 西北绿洲区间作模式对土壤团聚体组成及其有机碳含量的影响[J]. 农业资源与环境学报, 2021, 38(5):874-881.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[32] |
谢军红, 李玲玲, 张仁陟, 等. 一膜两年覆盖条件下耕作方法对旱作玉米产量及土壤物理性状的影响[J]. 水土保持学报, 2016, 30(3):184-189,195.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[33] |
王昌全, 魏成明, 李廷强, 等. 不同免耕方式对作物产量和土壤理化性状的影响[J]. 四川农业大学学报, 2001(2):152-154,187.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[34] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[35] |
张展军, 杨宏伟, 樊志龙, 等. 绿洲灌区免耕一膜两年用玉米密植的水分承载潜力[J]. 中国农业科学, 2021, 54(16):3406-3416.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[36] |
荣秀连, 王波, 宋采博, 等. 土壤某些物理性状对植物根系生长的影响[J]. 草业与畜牧, 2009(10):1-3,17.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[37] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |