
Impact of Microbial Agent Broadcast Application on Microbial Community Structure of Saline-alkali Soil in Shizuishan of Ningxia
SHA Yuexia, HUANG Zeyang, WEI Zhaoqing
Impact of Microbial Agent Broadcast Application on Microbial Community Structure of Saline-alkali Soil in Shizuishan of Ningxia
Saline-alkali soil is a reserved cultivated land resource with high value. The soil microbial community can be used as one of the biological evaluation indicators to measure the soil quality. Illumina MiSeq technology was used to detect the ITS and 16S rRNA sequence of the samples. The regulating effects of two microbial agents on the micro-ecological environment of saline-alkali soil in Shizuishan of Ningxia were analyzed. The results showed that the broadcast application of microbial agent YF and JF could reduce the pH of saline-alkali soil and improve the nutrient status. In addition, the richness index, diversity index and evenness index of fungal and bacterial communities increased significantly. The relative abundances of Fusarium and Aspergillus in fungal community were reduced by more than 40%. The relative abundances of Arthrobacter, Sphingomonas and Nocardioides in bacterial community were increased above 8.0%. The broadcast application of microbial agents reduced the operational taxonomic units (OTU) number of soil fungal and bacterial communities compared to the empty control. The environmental factors, including soil nitrate nitrogen, organic matter, K, C, N, P and pH, had significant effect on microbial community of saline-alkali soil. Therefore, the broadcast application of the two microbial agents can improve the saline-alkali soil quality as well as the soil micro-ecological environment in Shizuishan of Ningxia.
microbial agent / broadcast application / Shizuishan in Ningxia / saline-alkali soil / microbial community structure {{custom_keyword}} /
[1] |
王遵亲. 中国盐渍土[M]. 北京: 科学出版社, 1993.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[2] |
边荣荣, 孙兆军, 李向辉, 等. 西北盐碱地改良利用技术研究现状及展望[J]. 宁夏工程技术, 2016, 15(4):404-408.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[3] |
Plants exposed to salt stress undergo changes in their environment. The ability of plants to tolerate salt is determined by multiple biochemical pathways that facilitate retention and/or acquisition of water, protect chloroplast functions, and maintain ion homeostasis. Essential pathways include those that lead to synthesis of osmotically active metabolites, specific proteins, and certain free radical scavenging enzymes that control ion and water flux and support scavenging of oxygen radicals or chaperones. The ability of plants to detoxify radicals under conditions of salt stress is probably the most critical requirement. Many salt-tolerant species accumulate methylated metabolites, which play crucial dual roles as osmoprotectants and as radical scavengers. Their synthesis is correlated with stress-induced enhancement of photorespiration. In this paper, plant responses to salinity stress are reviewed with emphasis on physiological, biochemical, and molecular mechanisms of salt tolerance. This review may help in interdisciplinary studies to assess the ecological significance of salt stress.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[4] |
韩亚琦, 唐宇丹, 张少英, 等. 盐胁迫抑制槲栎2变种光合作用的机理研究[J]. 西北植物学报, 2007, 27(3):583-587.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[5] |
宋日, 吴春胜, 牟金明, 等. 深松土对玉米根系生长发育的影响[J]. 吉林农业大学学报, 2000, 22(4):73-75,80.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[6] |
李芙荣, 杨劲松, 吴亚坤, 等. 不同秸秆埋深对苏北滩涂盐渍土水盐动态变化的影响[J]. 土壤, 2013, 45(6):1101-1107.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[7] |
秦都林, 王双磊, 刘艳慧, 等. 滨海盐碱地棉花秸秆还田对土壤理化性质及棉花产量的影响[J]. 作物学报, 2017, 43(7):1030-1042.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[8] |
王启龙, 卢楠, 魏样. 不同改良措施对定边盐碱地土壤理化性质、黑麦草生长及产量的影响[J]. 江苏农业科学, 2019, 47(11):282-286.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[9] |
王景艳, 邓力群, 隆小华, 等. 滨海盐溃化土壤引种油葵的试验研究[J]. 土壤, 2008, 40(1):121-124.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[10] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[11] |
鲁凯珩, 金杰人, 肖明. 微生物肥料在盐碱土壤中的应用展望[J]. 微生物学通报, 2019, 46(7):1695-1705.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[12] |
沙月霞, 王晨曦, 邢敏, 等. 微生物菌剂拌土对玉米农田土壤细菌群落多样性的影响[J]. 安徽农业科学, 2021, 49(5):138-142,146.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[13] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[14] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[15] |
沙月霞, 邢敏, 李明洋, 等. 微生物菌剂拌土对玉米茎基腐病的预防和促生效果[J]. 安徽农业科学, 2021, 49(4):141-144.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[16] |
余美, 芮孝芳. 宁夏盐碱地改良利用研究进展[J]. 水利水电科技进展, 2006, 26(6):85-90.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[17] |
吴晓卫, 付瑞敏, 郭彦钊, 等. 耐盐碱微生物复合菌剂的选育、复配及其对盐碱地的改良效果[J]. 江苏农业科学, 2015, 43(6):346-349.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[18] |
苟宇波. 宁夏盐碱地不同改良模式对土壤理化性质和植物功能性状的影响[D]. 北京: 北京林业大学, 2017.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[19] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[20] |
侯景清, 王旭, 陈玉海, 等. 乳酸菌复合制剂对盐碱地改良及土壤微生物群落的影响[J]. 南方农业学报, 2019, 50(4):710-718.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[21] |
范娜, 彭之东, 白文斌, 等. 微生物菌剂对土壤酶活性及高粱生长的影响[J]. 中国农业科技导报, 2021, 23(2):185-192.
为揭示微生物菌肥施用对盐碱地的改良效果,将有机废弃物资源有效再利用,研究微生物菌剂对高粱不同生育期土壤蔗糖酶、磷酸酶活性的变化及对高粱生长的影响。结果表明:施用微生物菌肥的各处理均能提高土壤蔗糖酶、磷酸酶的活性,以T5、T6对脲酶的影响最大。在高粱生长苗期、拔节期、抽穗期和成熟期土壤中的脲酶活性较高,分别为1.441、1.495、1.407和1.379 mg·g<sup>-1</sup>·d<sup>-1</sup>,明显高于其他各处理。各处理对高粱拔节期土壤脲酶的影响效果为T5>T6>T1>T4>T2>T3>CK,各处理对高粱不同生长发育期脲酶活性影响大小为拔节期>抽穗期>苗期>成熟期,这说明适宜微生物菌剂可以显著提高土壤蔗糖酶和磷酸酶活性,有效改善土壤的肥力状况,从而提高作物对土壤中氮素的利用。随着生育期的推进,土壤磷酸酶活性呈现先降后升趋势。T5各生育时期土壤磷酸酶活性均显著高于其他各处理,T6次之。表现突出的T5、T6所用两个菌株是前期筛选出的耐盐菌株,可以改善盐碱地理化性状,为盐碱地改良奠定理论基础。
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[22] |
林先贵, 胡君利. 土壤微生物多样性的科学内涵及其生态服务功能[J]. 土壤学报, 2008, 45(5):892-900.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[23] |
Paddy rice fields occupy broad agricultural area in China and cover diverse soil types. Microbial community in paddy soils is of great interest since many microorganisms are involved in soil functional processes. In the present study, Illumina Mi-Seq sequencing and functional gene array (GeoChip 4.2) techniques were combined to investigate soil microbial communities and functional gene patterns across the three soil types including an Inceptisol (Binhai), an Oxisol (Leizhou), and an Ultisol (Taoyuan) along four profile depths (up to 70 cm in depth) in mesocosm incubation columns. Detrended correspondence analysis revealed that distinctly differentiation in microbial community existed among soil types and profile depths, while the manifest variance in functional structure was only observed among soil types and two rice growth stages, but not across profile depths. Along the profile depth within each soil type, Acidobacteria, Chloroflexi, and Firmicutes increased whereas Cyanobacteria, beta-proteobacteria, and Verrucomicrobia declined, suggesting their specific ecophysiological properties. Compared to bacterial community, the archaeal community showed a more contrasting pattern with the predominant groups within phyla Euryarchaeota, Thaumarchaeota, and Crenarchaeota largely varying among soil types and depths. Phylogenetic molecular ecological network (pMEN) analysis further indicated that the pattern of bacterial and archaeal communities interactions changed with soil depth and the highest modularity of microbial community occurred in top soils, implying a relatively higher system resistance to environmental change compared to communities in deeper soil layers. Meanwhile, microbial communities had higher connectivity in deeper soils in comparison with upper soils, suggesting less microbial interaction in surface soils. Structure equation models were developed and the models indicated that pH was the most representative characteristics of soil type and identified as the key driver in shaping both bacterial and archaeal community structure, but did not directly affect microbial functional structure. The distinctive pattern of microbial taxonomic and functional composition along soil profiles implied functional redundancy within these paddy soils.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[24] |
水燕, 徐增洪, 刘国锋. 不同土壤深度对宁夏石嘴山盐碱地细菌菌群多样性的影响[J]. 生态学报, 2019, 39(10):3597-3606.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[25] |
代金霞, 田平雅, 张莹, 等. 银北盐渍化土壤中6 种耐盐植物根际细菌群落结构及其多样性[J]. 生态学报, 2019, 39(8):2705-2714.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[26] |
李明, 毕江涛, 王静. 宁夏不同地区盐碱化土壤细菌群落多样性分布特征及其影响因子[J]. 生态学报, 2020, 40(4):1316-1330.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[27] |
沙月霞, 李明洋, 伍顺华, 等. 微生物菌剂拌土对盐碱地玉米茎基腐病的预防及促生效果[J]. 中国农学通报, 2021, 37(5):75-82.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[28] |
高雪峰, 韩国栋, 张国刚. 短花针茅荒漠草原土壤微生物群落组成及结构[J]. 生态学报, 2017, 37(15):5129-5136.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[29] |
张爱梅, 韩雪英, 王嘉, 等. 马衔山中国沙棘根瘤内共生细菌多样性研究[J]. 生态学报, 2019, 39(1):294-301.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[30] |
鲍士旦. 土壤农化分析(第三版)[M]. 北京: 中国农业出版社, 2000:25-108.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[31] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[32] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[33] |
段雪娇. 微生物菌剂对水稻土土壤微生物数量及酶活性的影响[D]. 哈尔滨: 东北农业大学, 2015.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[34] |
李凤霞, 王学琴, 郭永忠, 等. 宁夏不同类型盐渍化土壤微生物区系及多样性[J]. 水土保持学报, 2011, 25(5):107-111.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[35] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[36] |
柴晓彤, 顾金凤, 毛亮, 等. 微生物菌肥对盐渍化土壤中盐分离子及有机质含量的影响[J]. 上海交通大学学报(农业科学版), 2017(1):78-84.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[37] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[38] |
王晶晶, 樊伟, 崔珺, 等. 氮磷添加对亚热带常绿阔叶林土壤微生物群落特征的影响[J]. 生态学报, 2017, 37(24):8361-8373.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[39] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[40] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |