
Spatial-temporal Variation Analysis and Comprehensive Evaluation of Soil Fertility in Guangdong Major Tea Areas
CUI Yingying, ZHOU Bo, CHEN Yiyong, LIU Jiayu, LI Jianlong, TANG Hao, TANG Jinchi
Spatial-temporal Variation Analysis and Comprehensive Evaluation of Soil Fertility in Guangdong Major Tea Areas
To understand the changes of soil nutrient characteristics of tea gardens in Guangdong Province, adjust soil nutrient management strategies in time, and improve tea yield and quality, the authors took three main tea areas in eastern, western and northern Guangdong as the research objects, conducted a comprehensive analysis of soil pH, organic matter, alkali-hydrolyzed nitrogen, available phosphorus, available potassium and medium-trace elements, and systematically evaluated the temporal and spatial changes of soil fertility attributes in these areas. The results showed that after 10 years’ change of nutrient management since 2009, the content of soil organic matter and available potassium in the tea area of eastern Guangdong increased significantly, reaching 22.87 mg/kg and 123.00 mg/kg, respectively. The soil pH in the tea area of western Guangdong decreased significantly, and the soil acidification degree was intensified. The soil organic matter content in the tea area of northern Guangdong increased significantly from 18.46 mg/kg to 26.27 mg/kg. The spatial difference analysis of soil fertility status of Guangdong tea gardens showed that the content of soil organic matter and available potassium in the tea area of western Guangdong was significantly lower than those in the tea area of eastern and northern Guangdong. Only the eastern Guangdong tea area had pH above 4.5. The content of Fe, Mn, Cu, Zn and Mg in the tea area of northern and eastern Guangdong were higher than those in western Guangdong, and some differences reached significant level. The soil nutrient management in the tea area of eastern Guangdong tended to be reasonable, and the application of nitrogen and phosphorus fertilizers should be highlighted appropriately. The soil nutrient management in the tea area of northern Guangdong was acceptable, but some types of organic fertilizers needed to be adjusted to alkaline fertilizers and appropriate soil conditioners should be applied to inhibit the aggravation of soil acidification. At the same time, the application of phosphorus and potassium fertilizers should be strengthened. The soil fertility in the tea area of western Guangdong was poor, and the soil acidification was intensified, therefore, high-quality organic fertilizer and an appropriate amount of soil conditioner should be applied to improve the soil fertility and quality.
tea cultivation / soil fertility / medium and trace elements / nutrient management / spatial-temporal difference {{custom_keyword}} /
表1 引物序列 |
引物 | 序列5’-3’ | 酶切位点 | 用途 |
---|---|---|---|
ldh1F | AATTxxxxxGAATTChhhhhACCGTGTTAAGTTCAAGCGCACCAA | EcoRI | 克隆ldh基因上游片段526 bp |
ldh1R | AATTxxxxxGAATTCGGATCChhhhhAAGACTTTCTCCAGTGATTTTACAT | EcoRI, BamHI | |
ldh2F | AATTxxxxxTCTAGAhhhhhGCCGACATGCCGGGTGGCGGTTACG | XbaI | 克隆ldh基因下游片段526 bp |
ldh2R | AATTxxxxxGCATGCGTCGAChhhhhGGCGACGGTCATTATTTCGCAGGCG | SphI, SalI | |
ldh-up | TTTTTGGCGCAACGGTTGACGGTGC | — | 验证ldh基因敲除结果 |
ldh-down | ATGCGGGTCGCCGCCGCGCCTGCCA | — | |
ldhF | CGGCTTAGACTATCTCGTTAGGACAC | — | 克隆ldh基因 |
ldhR | GTCTTATGAAACTCGCGGTATATAGCAC | — |
注:下划线部分为酶切位点位置。 |
表2 ldh1和ldh2 PCR反应体系组分 |
PCR反应体系组分 | 添加量/μL | 终浓度 |
---|---|---|
Template DNA | 1 | — |
Forward primer (10 μmol/L) | 1 | 0.2 μmol/L |
Reverse primer (10 μmol/L) | 1 | 0.2 μmol/L |
TransStart® FastPfu DNA Polymerase | 1 | 2.5 units |
5× TransStart® FastPfu Buffer | 10 | 1× |
dNTPs (2.5 mmol/L) | 4 | 0.2 mmol/L |
ddH2O | Up to 50 | — |
表3 ldh1和ldh2 PCR反应程序 |
步骤 | 温度/℃ | 时间 | 循环数 |
---|---|---|---|
预变性 | 95 | 2 min | 1 |
变性 | 95 | 20 s | 35 |
退火 | 55 | 20 s | |
延伸 | 72 | 15 s | |
终延伸 | 72 | 5 min | 1 |
表4 E. cloacae和E. cloacae△ldh的摇瓶发酵产物的比较 |
产物浓度/(g/L) | 菌株 | 变化情况 | |
---|---|---|---|
E. cloacae | E. cloacae△ldh | ||
乙偶姻 | 2.83±0.48a(48 h) | 3.05±0.27a(48 h) | — |
乳酸 | 2.85±0.21a(12 h) | 0.01±0.01b(48h) | ↓ |
2,3-BD | 17.11±0.51b(12 h) | 18.28±0.42a(12 h) | ↑ |
丁二酸 | 2.08±0.24b(48 h) | 2.46±0.10a(24 h) | ↑ |
乙酸 | 2.92±0.20b(48 h) | 3.63±0.31a(48 h) | ↑ |
乙醇 | 2.81±0.11a(24 h) | 3.17±0.31a(24 h) | — |
注:括号中时间为相应产物最大产量时的时间;↑:提高;↓:下降;—:不变。 |
[1] |
骆耀平. 茶树栽培学[M]. 北京: 中国农业出版社, 2015:1-105.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[2] |
国家统计局农村社会经济调查司. 中国农村统计年鉴[M]. 北京: 中国统计出版社, 2020:90-171.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[3] |
刘嘉裕, 唐颢, 黎健龙, 等. 广东茶区茶园施肥现状及发展趋势[J]. 广东茶业, 2019(5):2-6.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[4] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[5] |
阮建云, 马立锋, 伊晓云, 等. 茶树养分综合管理与减肥增效技术研究[J]. 茶叶科学, 2020, 40(1):85-95.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[6] |
邵元海, 孙春霞, 周静峰, 等. 江苏茶园土壤主要养分现状分析与施肥对策[J]. 茶叶, 2020, 46(2):107-109.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[7] |
林小兵, 孙永明, 江新凤, 等. 江西省茶园土壤肥力特征及其影响因子[J]. 应用生态学报, 2020, 31(4):1163-1174.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[8] |
张小琴, 陈娟, 高秀兵, 等. 贵州重点茶区茶园土壤pH值和主要养分分析[J]. 西南农业学报, 2015, 28(1):286-291.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[9] |
刘美雅, 伊晓云, 石元值, 等. 茶园土壤性状及茶树营养元素吸收、转运机制研究进展[J]. 茶叶科学, 2015(2):12-22.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[10] |
李鑫, 张文菊, 邬磊, 等. 土壤质量评价指标体系的构建及评价方法[J]. 中国农业科学, 2021, 54(14):3043-3056.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[11] |
唐劲驰, 唐颢, 黎健龙, 等. 广东茶园土壤营养状况调查[J]. 广东农业科学, 2012, 39(14):52-55.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[12] |
鲍士旦. 土壤农化分析(3版)[M]. 北京: 中国农业出版社, 2000:14-177.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[13] |
鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000:130-209.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[14] |
中国人民共和国国土资源部. 土地质量地球化学评价规范[EB/OL]. [2016-06-12]. http://www.doc88.com/p-4774737247005.html
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[15] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[16] |
宇菲. 化肥农药使用量零增长行动启动[J]. 农业工程, 2015, 5(2):97.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[17] |
倪康, 廖万有, 伊晓云, 等. 我国茶园施肥现状与减施潜力分析[J]. 植物营养与肥料学报, 2019, 25(3):421-432.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[18] |
付浩然, 李婷玉, 曹寒冰, 等. 我国化肥减量增效的驱动因素探究[J]. 植物营养与肥料学报, 2020, 26(3):561-580.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[19] |
戴素贤. 浅谈广东乌龙茶[J]. 广东茶业, 2004, 5:38-41.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[20] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[21] |
雷琼, 袁玲. 钾肥对幼龄茶树氮磷钾吸收和茶叶产量及品质的效应[J]. 中国土壤与肥料, 2008(5):41-44.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[22] |
边金霖, 董迹芬, 林杰, 等. 钾肥施用对茶鲜叶香气组分的影响[J]. 福建农林大学学报(自然科学版), 2012, 41(6): 601-607.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[23] |
韩文炎. 茶叶品质与钾素营养[M]. 杭州: 浙江大学出版社, 2006:23-30.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[24] |
刘健伟, 方寒寒, 马立峰, 等. 不同氮肥水平下春季茶树新梢代谢组学变化[J]. 浙江农业科学, 2019, 60(2):189-192.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[25] |
滕翼. 茶园生态环境及茶品质与栽培模式的关系探究[J]. 中国园艺文摘, 2016, 228(1):220-221.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[26] |
陶湘辉. 正确认识茶园转化期间施肥管理的几个问题[J]. 中国茶叶, 2017(5):32-33.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[27] |
王建华, 马军伟, 俞巧钢, 等. 有机肥部分替代化肥对茶叶产量与品质的影响[J]. 浙江农业科学, 2020, 61(4):689-691.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[28] |
胡诚, 曹志平, 罗艳蕊, 等. 长期施用生物有机肥对土壤肥力及微生物生物量碳的影响[J]. 中国生态农业学报, 2007, 59(3):48-51.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[29] |
田小明, 李俊华, 王成, 等. 连续3年施用生物有机肥对土壤养分、微生物生物量及酶活性的影响[J]. 土壤, 2014, 46(3):481-488.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[30] |
孙永明, 张昆, 叶川, 等. 江西茶园土壤酸化及对策[J]. 土壤与作物, 2017, 6(2):139-145.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |