
Ultra-low Dose Spray of Small Plant Protection UAV: Control Effect on Wheat Powdery Mildew in Desert Oasis Wheat Region
CUI Yanhua, ZHOU Tingting, SHEN Yuyang, CHEN Li, LIN Guocang, YANG Anpei, ZHANG Hang, LEI Junjie, LI Guangkuo, GAO Haifeng
Ultra-low Dose Spray of Small Plant Protection UAV: Control Effect on Wheat Powdery Mildew in Desert Oasis Wheat Region
The control effect of ultra-low dose spray of small plant protection UAV on wheat powdery mildew was studied in order to provide guidance for the scientific use of small plant protection UAV to prevent and control wheat diseases. The random block method was used to investigate the occurrence of wheat powdery mildew in each treatment, and the control effects of fungicides on wheat powdery mildew were evaluated. The results showed that 240 g/L Mefentrifluconazole·pyraclostrobin SC with the rate of 180 g/hm2, 19% Picoxystrobin·propiconazole SC with the rate of 199.50 g/hm2 and 23% Epoxiconazole·kresoxim-methyl SC with the rate of 103.50 g/hm2 added with synergist Maifei had good control effects on wheat powdery mildew, and the control effects were 77.88%, 74.23% and 73.26%, respectively. The control effects of 42% Metrafenone SC with the rate of 189.00 g/hm2, 430 g/L Tebuconazole SC with the rate of 129.00 g/hm2, 75% Trifloxystrobin·tebuconazole WG with the rate of 202.50 g/hm2 and 40% Myclobutanil WP with the rate of 120.00 g/hm2 added with synergist Maifei on wheat powdery mildew were between 60.90% and 65.72%. The seven kinds of fungicides can all be used for ultra-low dose spray of small plant protection UAV to control wheat powdery mildew, and can be used alternately in production to slow down the emergence of drug resistance.
desert oasis wheat region / plant protection UAV / fungicide / Blumeria graminis f.sp.tritici / control effect / food production safety {{custom_keyword}} /
表1 ISSR分析试验所用引物序列 |
引物 | 序列 |
---|---|
0531-018 | AGAGAGAGAGAGAGAGCTTG |
834 | AGAGAGAGAGAGAGAGYT |
836 | AGAGAGAGAGAGAGAGYA |
ISSR4 | GAGAGAGAGAGAGAGAYC |
ISSR6 | GTGTGTGTGTGTGTGTYA |
ISSR7 | AGAGAGAGAGAGAGAGYC |
ISSR31 | AGAGAGAGAGAGAGAGYC |
ISSR35 | CACACACACACACACARG |
ISSR50 | GAGAGAGAGAGAGAGAC |
P10-873 | GACAGACAGACAGACA |
表2 MSAP分析试验所用接头和引物信息 |
接头与引物 | 引物序列(5’-3’) |
---|---|
EcoR I 接头1 | CTCGTAGACTGCGTACC |
EcoR I 接头2 | AATTGGTACGCAGTCTAC |
HM 接头1 | GACGATGAGTCCTGAG |
HM 接头2 | CGCTCAGGACTCAT |
E00 | GACTGCGTACCAATTC |
MSP00 | GATGAGTCCTGAGCGG |
E34 | GACTGCGTACCAATTCAAT |
E38 | GACTGCGTACCAATTCACT |
E40 | GACTGCGTACCAATTCAGC |
E41 | GACTGCGTACCAATTCAGG |
E44 | GACTGCGTACCAATTCATC |
E46 | GACTGCGTACCAATTCATT |
E50 | GACTGCGTACCAATTCCAT |
E77 | GACTGCGTACCAATTCGTG |
MSP39 | GATGAGTCCTGAGCGGAGA |
MSP40 | GATGAGTCCTGAGCGGAGC |
MSP41 | GATGAGTCCTGAGCGGAGG |
MSP44 | GATGAGTCCTGAGCGGATC |
MSP50 | GATGAGTCCTGAGCGGCAT |
MSP59 | GATGAGTCCTGAGCGGCTA |
MSP60 | GATGAGTCCTGAGCGGCTC |
MSP61 | GATGAGTCCTGAGCGGCTG |
表3 10个样本遗传多样性分析结果 |
引物 | Na | Ne | H | I | 多态位点 | 多态百分数/% |
---|---|---|---|---|---|---|
0531-018 | 1.6667±0.4924 | 1.4500±0.4135 | 0.2557±0.2122 | 0.3768±0.2990 | 8 | 66.67 |
834 | 1.3750±0.5175 | 1.2920±0.4440 | 0.1579±0.2284 | 0.2277±0.3230 | 3 | 37.50 |
836 | 1.5714±0.5354 | 1.3880±0.4392 | 0.2196±0.2246 | 0.3239±0.3189 | 4 | 57.14 |
ISSR31 | 1.5455±0.5222 | 1.4352±0.4498 | 0.2368±0.2349 | 0.3399±0.3322 | 6 | 54.55 |
ISSR35 | 1.8750±0.3536 | 1.5437±0.3451 | 0.3177±0.1789 | 0.4718±0.2447 | 7 | 87.50 |
ISSR4 | 1.2500±0.5000 | 1.2455±0.4910 | 0.1239±0.2477 | 0.1721±0.3443 | 1 | 25.00 |
ISSR50 | 1.6364±0.5045 | 1.4360±0.4343 | 0.2442±0.2193 | 0.3591±0.3074 | 7 | 63.64 |
ISSR6 | 1.6667±0.5164 | 1.4520±0.4422 | 0.2561±0.2217 | 0.3777±0.3121 | 4 | 66.67 |
ISSR7 | 1.5714±0.5345 | 1.4746±0.4929 | 0.2514±0.2479 | 0.3587±0.3464 | 4 | 57.14 |
P10-873 | 1.5000±0.5477 | 1.3709±0.4305 | 0.2098±0.2345 | 0.3045±0.3371 | 3 | 50.00 |
注:Na:观察等位基因数;Ne:有效等位基因数;H:Nei’s基因多样性;I:信息指数。 |
表4 基于ISSR标记的10个样品的遗传相似系数矩阵 |
J | G | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
---|---|---|---|---|---|---|---|---|---|---|
J | 1.0000 | |||||||||
G | 0.9625 | 1.0000 | ||||||||
2 | 0.9125 | 0.9500 | 1.0000 | |||||||
3 | 0.5125 | 0.4750 | 0.5000 | 1.0000 | ||||||
4 | 0.5750 | 0.5625 | 0.5875 | 0.8875 | 1.0000 | |||||
5 | 0.5875 | 0.5750 | 0.6000 | 0.8750 | 0.9875 | 1.0000 | ||||
6 | 0.5125 | 0.4750 | 0.5000 | 0.9750 | 0.8875 | 0.8750 | 1.0000 | |||
7 | 0.5000 | 0.4875 | 0.5125 | 0.9325 | 0.9250 | 0.9125 | 0.9375 | 1.0000 | ||
8 | 0.5250 | 0.5125 | 0.5375 | 0.9125 | 0.9250 | 0.9125 | 0.9125 | 0.9500 | 1.0000 | |
9 | 0.5250 | 0.4875 | 0.5125 | 0.9375 | 0.9000 | 0.8875 | 0.9375 | 0.9250 | 0.9750 | 1.0000 |
表5 样品J与样品9基因组DNA甲基化水平分析 |
模式 | 带型 | 条带数及比例 | ||
---|---|---|---|---|
HapⅡ | Msp Ⅰ | J | 9 | |
1 | 1 | Ⅰ(非甲基化) | 239 | 242 |
1 | 0 | Ⅱ(半甲基化) | 102 | 155 |
0 | 1 | Ⅲ(全甲基化) | 394 | 298 |
0 | 0 | Ⅳ(超甲基化) | 408 | 448 |
总扩增带数 | 735 | 695 | ||
总甲基化带数 | 904 | 901 | ||
全甲基化带数 | 802 | 746 | ||
总甲基化率/% | 79.09 | 78.83 | ||
全甲基化率/% | 70.17 | 65.27 | ||
半甲基化率/% | 8.92 | 13.56 |
注:总甲基化率=[(I+Ⅱ+Ⅲ)]/(I+Ⅱ+Ⅲ+Ⅳ)]×100%;全甲基化率=[(I+II)]/(I+Ⅱ+Ⅲ+Ⅳ)]×100%;半甲基化率=[Ⅲ/(I+Ⅱ+Ⅲ+Ⅳ)]×100%。 |
表6 样品J与样品9基因组DNA甲基化模式分析 |
模式 | 类型 | 带型 | 条带数 | 百分比/% | 甲基化变化 | |||
---|---|---|---|---|---|---|---|---|
无变化 | A1 | 1 | 1 | 1 | 1 | 186 | 67.30 | 非甲基化----非甲基化 |
A2 | 1 | 0 | 1 | 0 | 42 | 半甲基化----半甲基化 | ||
A3 | 0 | 1 | 0 | 1 | 307 | 全甲基化----全甲基化 | ||
去甲基化 | B1 | 1 | 0 | 1 | 1 | 21 | 18.87 | 半甲基化----非甲基化 |
B2 | 0 | 1 | 1 | 1 | 14 | 全甲基化----非甲基化 | ||
B3 | 0 | 0 | 1 | 1 | 18 | 超甲基化----非甲基化 | ||
B4 | 0 | 0 | 1 | 0 | 48 | 超甲基化----半甲基化 | ||
B5 | 0 | 0 | 0 | 1 | 49 | 超甲基化----全甲基化 | ||
甲基化 | C1 | 1 | 1 | 1 | 0 | 11 | 13.46 | 非甲基化----半甲基化 |
C2 | 1 | 1 | 0 | 1 | 35 | 非甲基化----全甲基化 | ||
C3 | 1 | 1 | 0 | 0 | 5 | 非甲基化----超甲基化 | ||
C4 | 1 | 0 | 0 | 0 | 35 | 半甲基化----超甲基化 | ||
C5 | 0 | 1 | 0 | 0 | 21 | 全甲基化----超甲基化 |
[1] |
高海峰, 范沽茹, 周益林, 等. 小麦品种(系)抗白粉病基因推导及分子标记鉴定[J]. 植物病理学报, 2017, 47(3):370-379.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[2] |
吴先华, 罗培高, 晏本菊, 等. 小麦抗白粉病基因的定位及其在育种中的应用研究进展[J]. 中国农学通报, 2006, 22(5):346-351.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[3] |
王学贵, 黎人羽, 沈丽淘, 等. 种植模式、种植密度及施肥水平对小麦白粉病发生的影响[J]. 植物保护学报, 2012, 39(2):185-186.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[4] |
高海峰, 赵海燕, 刘恩良, 等. 新疆喀什地区不同种植模式下小麦白粉病田间消长规律初探[J]. 新疆农业科学, 2016, 53(10):1823-1828.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[5] |
曹乃倩, 刘桂茹, 杨学举. 小麦抗白粉病基因定位及分子标记辅助育种综述[J]. 中国农学通报, 2007, 23(7):482-486.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[6] |
詹海仙, 畅志坚, 杨足君, 等. 小麦抗白粉病基因来源及抗性评价的研究进展[J]. 中国农学通报, 2010, 26(10):42-46.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[7] |
陈卫民, 郭文超, 焦子伟, 等. 伊犁河谷小麦主要病害发生种类、分布危害与防治策略[J]. 新疆农业科学, 2007, 44(S1):124-126.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[8] |
高海峰, 努尔孜亚·亚力买买提, 李广阔, 等. 几种杀菌剂对小麦白粉病的防治效果[J]. 新疆农业科学, 2013, 50(7):1260-1264.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[9] |
刘传德, 吴桂本, 宫本义, 等. 小麦主要病害化学防治研究进展[J]. 农药, 2001, 40(9):4-6.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[10] |
郭一丹, 李强, 王保通, 等. 陕西省小麦白粉菌对三唑酮的抗药性监测[J]. 麦类作物学报, 2012, 32(2):370-373.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[11] |
刘君丽, 司乃国, 解会敏, 等. 小麦白粉病化学防治现状及发展方向[J]. 农药, 2002, 41(4):15-16.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[12] |
周益林, 段霞瑜, 盛宝钦, 等. 植物白粉病的化学防治进展[J]. 农药学学报, 2001(3):12-18.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[13] |
史倩倩, 范洁茹, 周益林, 等. 2012年小麦白粉病菌群体毒性和三唑酮抗性及与温度敏感性和遗传多样性之间的关系[D]. 北京: 中国农业科学院, 2014.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[14] |
秦建华, 李艳朋. 大疆T20植保无人机防治小麦白粉病药效试验[J]. 现代农业科技, 2021(4):89-90.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[15] |
孙涛, 张宋超, 薛新宇, 等. 小麦不同生育期单旋翼植保无人机施药作业参数优化[J]. 植物保护学报, 2021, 48(3):501-509.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[16] |
胡中泽, 王安, 钱巍, 等. 植保无人机对小麦主要病害的防治[J]. 浙江农业科学, 2018, 59(7):1206-1210.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[17] |
兰玉彬, 陈盛德, 邓继忠, 等. 中国植保无人机发展形势及问题分析[J]. 华南农业大学学报, 2019, 40(5):217-225.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[18] |
国家质量技术监督局. 农药田间药效试验准则(一)[M]. 北京: 中国标准出版社, 2000:90-93.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[19] |
胡建玉. 23%嘧菌酯·氟环唑悬浮剂防治小麦白粉病田间药效试验[J]. 农民致富之友, 2019(5):142.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[20] |
高革新, 何玲, 穆龙, 等. 23%嘧菌酯·氟环唑悬浮剂防治小麦白粉病药效试验[J]. 农村科技, 2020(1):31-32.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[21] |
张伟, 刘保友, 李云朋, 等. 几种杀菌剂对小麦白粉病的防治效果试验[J]. 湖北农业科学, 2016, 55(11):2799-2801.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |