Growth and Physiological Response of Cyperus esculentus L. to Natural Saline-alkali Stress

LIANG Peixin, TANG Rong, GUO Chenli, GUO Rui, HE Huangcheng, WANG Tengfei, LIU Jianguo

PDF(1435 KB)
PDF(1435 KB)
Chinese Agricultural Science Bulletin ›› 2022, Vol. 38 ›› Issue (26) : 1-8. DOI: 10.11924/j.issn.1000-6850.casb2021-0862

Growth and Physiological Response of Cyperus esculentus L. to Natural Saline-alkali Stress

Author information +
History +

Abstract

The study aims to explore the growth and physiological response of Cyperus esculentus under different concentrations of natural saline-alkali stress, and reveal the saline-alkali tolerance mechanism and ability of C. esculentus. In this experiment, ‘Zhongyousha No.1’ was used as the test material, physiological metabolic indexes, such as growth and development, osmotic regulation substances, malondialdehyde (MDA) and protective enzyme activities of C. esculentus, were observed by collecting and mixing natural saline-alkali soil and farmland soil at the ratio of 0%, 25%, 50%, 75% and 100%, respectively. The results showed that with the increase of saline-alkali stress intensity, chlorophyll synthesis was blocked, plant height, tiller number, bean number, total grain weight and biomass decreased significantly. The content of proline, soluble sugar, soluble protein and malondialdehyde all showed an increasing trend, and increased significantly under 75% saline-alkali soil ratio. The superoxide dismutase (SOD) activity increased first, reached the maximum under 50% saline-alkali soil ratio and then decreased. The growth of C. esculentus was inhibited under natural saline-alkali stress, and seedling emergence stage and tillering stage were significantly delayed. With the rise of saline-alkali stress degree, cell membrane lipid peroxidation increased gradually, but C. esculentus could alleviate the salt stress by increasing SOD activity in the plant. At the same time, C. esculentus under saline-alkali stress could adjust the accumulation of proline and soluble sugar to enhance water absorbing capacity of plants from the environment, so as to improve the adaptability of plants to saline-alkali stress.

Key words

Cyperus esculentus L. / saline-alkali stress / biomass / osmotic regulating substance / malondialdehyde / chlorophyll

Cite this article

Download Citations
LIANG Peixin , TANG Rong , GUO Chenli , GUO Rui , HE Huangcheng , WANG Tengfei , LIU Jianguo. Growth and Physiological Response of Cyperus esculentus L. to Natural Saline-alkali Stress. Chinese Agricultural Science Bulletin. 2022, 38(26): 1-8 https://doi.org/10.11924/j.issn.1000-6850.casb2021-0862

References

[1]
王瑞元, 王晓松, 相海. 一种多用途的新兴油料作物——油莎豆[J]. 中国油脂, 2019, 44(1):1-4.
[2]
张小燕. 油莎豆的主要高产栽培技术[J]. 农业科技通讯, 2009(6):165-166.
[3]
赵永国, 邹锡玲, 张燕, 等. 油莎豆高油高产品种中油莎1号[J]. 中国种业, 2019(6):96-97.
[4]
张勇. 油料之王—油莎豆[J]. 特种经济动植物, 2004(2):35.
[5]
杨敏, 田丽萍, 薛琳. 不同油莎豆品种在新疆干旱气候区的产量表现与品质差异[J]. 中国油料作物学报, 2013, 35(4):451-454.
[6]
温利强. 我国盐渍土的成因及分布特征[D]. 合肥: 合肥工业大学,2010.
[7]
顾国安. 新疆盐渍化土壤的形成及其防治[J]. 新疆地理, 1984, 7(4):1-16.
[8]
杨敏, 田丽萍, 薛琳. 不同油莎豆品种在新疆干旱气候区的产量表现与品质差异[J]. 中国油料作物学报, 2013, 35(4):451-454.
[9]
王玲丽, 石永亮, 李小珊, 等. 混合盐碱胁迫对孔雀草生长的影响[J]. 北方园艺, 2021(12):63-69.
[10]
WANG Y, NI N. Changes in chlorophyll, ribulose bisphosphate carboxylase-oxygenase, glycine betaine content, photosynthesis and transpiration in Amaranthus tricolor leaves during salt stress[J]. Journal of Pomology & Horticultural Science, 2015, 75(6):623-627.
[11]
杨少辉, 季静, 王罡, 等. 盐胁迫对植物影响的研究进展[J]. 分子植物育种, 2006(S1):139-142.
[12]
张婷婷, 杨美英, 王春红, 等. 盐碱胁迫下不同水稻品种渗透调节物质及相关基因的变化[J]. 西北农林科技大学学报自然科学版, 2016, 44(4):39-47.
[13]
CHENG T L, CHEN J H, ZHANG J B, et al. Physiological and proteomic analyses of leaves from the halophyte Tangut Nitraria reveals diverse response pathways critical for high salinity tolerance[J]. Frontiers in Plant Science, 2015, 6:30.
[14]
靳娟, 鲁晓燕, 王依. 果树耐盐性研究进展[J]. 园艺学报, 2014, 41(9):1761-1776.
[15]
李志萍, 张文辉. NaCl胁迫对栓皮栎幼苗生长及其生理响应[J]. 西北植物学报, 2013, 33(8):1630-1637.
[16]
鲁艳, 雷加强, 曾凡江, 等. NaCl胁迫对大果白刺幼苗生长和抗逆生理特性的影响[J]. 应用生态学报, 2014, 25(3):711-717.
采用盆栽试验,研究了不同浓度(0、50、100、200和400 mmol&middot;L<sup>-1</sup>)NaCl处理对1年生大果白刺生长状况及叶片过氧化氢(H<sub>2</sub>O<sub>2</sub>)、丙二醛(MDA)含量、超氧化物歧化酶(SOD)活性、过氧化氢酶(CAT)活性、过氧化物酶(POD)活性、抗坏血酸过氧化物酶(APX)活性、水势、可溶性糖和脯氨酸含量的影响.结果表明: 与对照相比,低浓度NaCl处理(&le;50 mmol&middot;L<sup>-1</sup>)对大果白刺生长没有显著的抑制作用,叶片的SOD、POD、CAT和APX活性均有所提高;高浓度(>50 mmol&middot;L<sup>-1</sup>)NaCl处理抑制了大果白刺的冠幅面积、分枝数和叶、枝、侧根干质量,叶片的SOD、CAT、POD活性和可溶性糖、脯氨酸含量显著下降. 随NaCl处理浓度升高,H<sub>2</sub>O<sub>2</sub>和MDA含量增加,叶片水势降低.&nbsp;
[17]
赵风斌, 王丽卿, 季高华, 等. 盐胁迫对3种沉水植物生物学指标及叶片中丙二醛含量的影响[J]. 环境污染与防治. 2012, 34(10):40-44.
[18]
XMJ A, HAI W A, SS B, et al. Comparative physiological responses and adaptive strategies of apple Malus halliana to salt, alkali and saline-alkali stress[J]. Scientia Horticulturae, 2019, 245:154-162.
[19]
裘丽珍, 黄有军, 黄坚钦, 等. 不同耐盐性植物在盐胁迫下的生长与生理特性比较研究[J]. 浙江大学学报:农业与生命科学版, 2006(4):420-427.
[20]
高显颖, 义如格勒图, 巴图仓, 等. 苏打盐碱胁迫对灌浆期水稻剑叶光合特性和产量的影响[J]. 安徽农业科学, 2018, 46(8):61-63.
[21]
朱义, 谭贵娥, 何池全, 等. 盐胁迫对高羊茅(Festuca arundinacea)幼苗生长和离子分布的影响[J]. 生态学报, 2007, 20(12):5447-5454.
[22]
JOLLY I D, MCEWAN K L, HOLLAND K L. A review of groundwater-surface water interactions in arid/semi-arid wetlands and the consequences of salinity for wetland ecology[J]. Ecohydrology, 2010, 1(1):43-58.
[23]
刘莹, 徐关印. 盐碱胁迫下黄瓜丙二醛含量及有机硅的缓解效应[J]. 北方园艺, 2017(22):1-5.
[24]
陶晶, 陈士刚, 秦彩云, 等. 盐碱胁迫对杨树各品种丙二醛及保护酶活性的影响[J]. 东北林业大学学报, 2005(3):13-15,37.
[25]
董亮, 何永志, 王远亮, 等. 超氧化物歧化酶(SOD)的应用研究进展[J]. 中国农业科技导报, 2013, 15(5):53-58.
[26]
李小玲, 王妍, 华智锐. 混合盐碱胁迫对黄芩幼苗生理特性的影响研究[J]. 江西农业学报, 2021, 33(2):27-32.
[27]
王志春, 杨福, 齐春艳, 等. 盐碱胁迫下水稻渗透调节的生理响应[J]. 干旱地区农业研究, 2010, 28(6):153-157.
[28]
郝凤, 刘晓静, 张晓磊, 等. 混合盐碱胁迫对紫花苜蓿苗期氮磷吸收及生理特性的影响[J]. 中国沙漠, 2015, 35(5):1268-1274.
[29]
李辛, 赵文智. 荒漠区植物雾冰藜光合特性对混合盐碱胁迫的响应[J]. 生态学报, 2018, 38(4):1183-1193.
[30]
张潭, 唐达, 李思思, 等. 盐碱胁迫对枸杞幼苗生物量积累和光合作用的影响[J]. 西北植物学报, 2017, 37(12):2474-2482.
Share on Mendeley
PDF(1435 KB)

115

Accesses

0

Citation

Detail

Sections
Recommended

/