Soil Bacterial Community of Rubber Plantations of Different Ages of Stand: Composition and Diversity Study

SUN Shuqing, DING Wei, SUN Rui, ZHANG Xicai, LAN Guoyu, CHEN Wei, YANG Chuan, WU Zhixiang

PDF(3000 KB)
PDF(3000 KB)
Chinese Agricultural Science Bulletin ›› 2022, Vol. 38 ›› Issue (9) : 93-100. DOI: 10.11924/j.issn.1000-6850.casb2021-0501

Soil Bacterial Community of Rubber Plantations of Different Ages of Stand: Composition and Diversity Study

Author information +
History +

Abstract

To understand the soil bacterial composition and diversity of rubber plantations of different ages of stand, soil samples were collected with 5-point sampling method, and the composition, diversity, and seasonal changes of soil bacterial communities in forests of three ages of stand were measured by using high-throughput sequencing. Acidobacteria, Chloroflexi, Actinobacteria Firmicutes, Bacteroidetes showed significant differences, and Nitrospirae showed extremely significant differences. Acidbacteria, Actinobacteria, γ-Proteobacteria, and Sphingobactaiia showed significant differences, while Ktedonobacteria, OPB35_soil_group, and Bacilli showed extremely significant differences. norank_c__Acidobacteria, Variibacter, Candidatus_koribacter, norank_o__JG30-KF-AS9 showed significant differences, and norank_c__OPB35_soil_group and Acidibacter showed extremely significant differences. There was no significant difference in the Simpson index, Sobs index, Ace index and Shannon index among the soil bacterial communities of the forests of three ages of stand. The seasonal interpretation of the microbial community was 24.60%. In summary, Proteobacteria and Acidobacteria were the most abundant bacterial groups and there was no significant difference in the diversity index, and the season was an important factor affecting community structure and diversity of soil bacterial communities of rubber plantations.

Key words

rubber plantations / soil bacterial community / diversity / seasonal change

Cite this article

Download Citations
SUN Shuqing , DING Wei , SUN Rui , ZHANG Xicai , LAN Guoyu , CHEN Wei , YANG Chuan , WU Zhixiang. Soil Bacterial Community of Rubber Plantations of Different Ages of Stand: Composition and Diversity Study. Chinese Agricultural Science Bulletin. 2022, 38(9): 93-100 https://doi.org/10.11924/j.issn.1000-6850.casb2021-0501

References

[1]
赵帆, 赵密珍, 王钰, 等. 基于高通量测序研究草莓根际微生物群落结构和多样性[J]. 土壤, 2019, 51(1):51-60.
[2]
FIERER N, JACKSON R B. The diversity and biogeography of soil bacterial communities[J]. Proceedings of the national academy of sciences, 2006, 103(3):626.
[3]
GU Y F, WANG Y Y, SHENG E L, et al. Long-term fertilization structures bacterial and archaeal communities along soil depth gradient in a paddy soil[J]. Frontiers in microbiology, 2017, 8:1516.
[4]
荣新山, 何敏, 王从彦, 等. 藏北退化高寒草原土壤细菌和真菌多样性分析[J]. 生态环境学报, 2018, 27(9):1646-1651.
[5]
顾松松, 胡秋龙, 刘仲华, 等. 不同类型茶园土壤细菌多样性及群落结构研究[J]. 茶叶通讯, 2019, 46(2):162-169.
[6]
崔佩佩, 武爱莲, 王劲松, 等. 不同施肥处理对高粱根际土壤微生物功能多样性的影响[J]. 华北农学报, 2018, 33(5):195-202.
[7]
魏鹏, 安沙舟, 董乙强, 等. 基于高通量测序的准噶尔盆地荒漠土壤细菌多样性及群落结构特征[J]. 草业学报, 2020, 29(5):182-190.
[8]
靳晓拓, 马继勇, 周彦妤, 等. 化肥减量配施有机肥下芒果园土壤细菌多样性及群落结构特征[J]. 热带作物报, 2019, 40(6):1205-1212.
[9]
许广, 王梦姣, 邓百万, 等. 不同植茶年限茶树根际土壤细菌多样性及群落结构研究[J]. 生物技术通报, 2020, 36(3):124-132.
运用传统培养法和高通量测序技术研究不同植茶年限(5年、10年、20年)茶树根际土壤细菌的多样性、结构和组成,并分析茶树土壤理化性质与细菌群落的相关性,为改善茶树的土壤和提高茶树产量提供参考。结果表明:两种方法均指出不同植茶年限下的根际细菌群落结构存在显著性差异,5年和10年茶树细菌多样性显著高于20年茶树细菌;培养法得出厚壁菌门(Firmicutes)和芽孢杆菌属(Bacillus)为优势门属,高通量测序技术得出酸杆菌门(Acidobacteria)、变形菌门(Proteobacteria)、拟杆菌门(Bacteroidetes)和Candidatus_Udaeobacter属为优势门属;总氮(TN)、总钾(TK)、总磷(TP)、pH是影响茶树细菌群落的关键理化因子;随着植茶年限增加,要采取措施防止土壤酸化,适当增施氮肥和磷肥。
[10]
梁田雨. 浑善达克沙地榆根际土壤微生物时空分布格局及功能预测[D]. 呼和浩特:内蒙古农业大学, 2019.
[11]
LAN G Y, WU Z X, LI Y W, et al. The drivers of soil bacterial communities in rubber plantation at local and geographic scales[J]. Archives of agronomy and soil science, 2020, 66(3):358-369.
[12]
鲁如坤. 土壤农业化学分析方法. 北京: 中国农业科技出版社, 1999.
[13]
LAN G Y, LI Y W, LESUEUR D, et al. Seasonal changes impact soil bacterial communities in a rubber plantation on Hainan Island, China[J]. Science of the environment, 2018, 626:826-834.
[14]
XU N, TAN G C, WANG H Y, et al. Effect of biochar additions to soil on nitrogen leaching, microbial biomass and bacterial community structure[J]. European journal of soil biology, 2016, 74.
[15]
孙倩, 吴宏亮, 陈阜, 等. 基于高通量测序的几种不同作物根际土壤细菌群落结构和多样性分析[J]. 农业生物技术学报, 2020, 28(8):1490-1498.
[16]
QIAO Y F, MIAO S J, ZHONG X, et al. The greatest potential benefit of biochar return on bacterial community structure among three maize-straw products after eight year field experiment in Monisols[J]. Applied soil ecology, 2020, 147:103432.
[17]
NAVARRETE I A, TSUTSUKI K. Land use impact on soil carbon, nitrogen, neutral sugar composition and related chemical properties in a degraded Ultisol in Leyte, Philippines[J]. Soil science and plant nutrition, 2008, 54(3):321-331.
[18]
黄萍, 王楠, 周紫羽, 等. 白云山落叶阔叶林土壤细菌群落结构及环境因子的相关性分析[J]. 河南农业大学学报, 2020, 54(3):415-421.
[19]
LIN Y T, JANGID K, WHITMAN W B, et al. Soil bacterial communities in native and regenerated perhumid montane forests[J]. Applied soil ecology, 2011, 47:111-118.
[20]
邓娇娇, 周永斌, 殷有, 等. 辽东山区典型人工针叶林土壤细菌群落多样性特征[J]. 生态学报, 2019, 39(3):997-1008.
[21]
赵爱花, 杜晓军, 臧婧, 等. 宝天曼落叶阔叶林土壤细菌多样性[J]. 生物多样性, 2015, 23(5):649-657.
土壤微生物在森林生态系统中起着重要作用。高通量测序方法的出现为进一步认识土壤微生物提供了契机。本文利用Illumina Miseq高通量测序技术对宝天曼森林土壤的细菌多样性进行了初步研究。结果显示: 在31个采样点内, 随着采样点增加, 检测出不同分类水平的土壤细菌类群也在增多, 当采样点达到31个时, 检测出的土壤细菌类群达到45门163纲319目495科785属和42,632个OTU; 31个土壤样品中所检测出的细菌类群平均有34.2门114.7纲215.2目323.7科446.6属5,924.7个OTU, 其中门、纲、目分类水平上的优势类群(所占比例)分别为变形菌门(Proteobacteria)(38.30%)、α-变形菌纲(α-Proteobacteria)(18.08%)、根瘤菌目(Rhizobiales)(10.62%)。这些初步研究结果表明在一定程度上宝天曼森林土壤有较高的细菌多样性水平, 为进一步认识森林土壤细菌多样性与植物多样性关系等奠定了基础。
[22]
邢慧, 蒋菊生, 麦全法, 等. 海南植胶区不同群落结构林下生物多样性分析[J]. 热带农业科学, 2012, 32(3):49-53.
[23]
秦越, 马琨, 刘萍. 马铃薯连作栽培对土壤微生物多样性的影响[J]. 中国生态农业学报, 2015, 23(2):225-232.
[24]
刘琼, 魏晓梦, 吴小红, 等. 稻田土壤固碳功能微生物群落结构和数量特征[J]. 环境科学, 2017, 38(2):760-768.
[25]
WANG Z, LIU L, CHEN Q, et al. Conservation tillage increases soil bacterial diversity in the dryland of northern China[J]. Agronomy for sustainable development, 2016, 36(2):28.
[26]
NEJATOLAHI M, MORTAZAVI S, ILDOROMI A. Levels of Cu, Zn, Pb, and Cd in the leaves of the tea plant (Camellia sinensis) and in the soil of Gilan and Mazandaran farms of Iran[J]. Journal of food measurement and characterization, 2014, 8(4):277-282.
[27]
HE R, WANG J S, SHI Z, et al. Variations of soil microbial biomass across four different plant communities along an elevation gradient in Wuyi mountains, China[J]. Acta ecologica sinica, 2009, 29(9):5138-5144.
[28]
侯建伟, 邢存芳, 邓晓梅, 等. pH对花椒根区土壤细菌群落结构的影响[J]. 西北农林科技大学学报:自然科学版, 2020, 48(5):115-122.
[29]
王俊华, 尹睿, 张华勇, 等. 长期定位施肥对农田土壤酶活性及其相关因素的影响[J]. 生态环境, 2007, 16(1):191-196.
[30]
TABUCHI H, KATO K, NIOH I. Season and soil management affect soil microbial communities estimated using phospholipid fatty acid analysis in a continuous cabbage (Brassica oleracea var. capitata) cropping system[J]. Soil science and plant nutrition, 2008, 54:369-378.
[31]
RASCHE F, KNAPP D, KAISER C, et al. Seasonality and resource availability control bacterial and archaeal communities in soils of a temperate beech forest[J]. The isme journal 2011, 5:389-402.
[32]
严绍裕. 杉木连栽地土壤的细菌群落结构与其特性的关系研究[J]. 西南林业大学报, 2020, 40(3):19-27.

RIGHTS & PERMISSIONS

Copyright reserved © 2022. Chinese Agricultural Association Bulletin. All articles published represent the opinions of the authors, and do not reflect the official policy of the Chinese Agricultural Association or the Editorial Board, unless this is clearly specified.
Share on Mendeley
PDF(3000 KB)

Accesses

Citation

Detail

Sections
Recommended

/