224 Maize Inbred Lines from Shanxi: Genetic Structure and Genetic Relationships Based on SSR Markers by Fluorescence Detection

LI Rui, SHANG Xiao, SHANG Chunshu, CHANG Lifang, YAN Lei, BAI Jianrong

PDF(2023 KB)
PDF(2023 KB)
Chinese Agricultural Science Bulletin ›› 2022, Vol. 38 ›› Issue (5) : 9-16. DOI: 10.11924/j.issn.1000-6850.casb2021-0281

224 Maize Inbred Lines from Shanxi: Genetic Structure and Genetic Relationships Based on SSR Markers by Fluorescence Detection

Author information +
History +

Abstract

In order to use the heterosis, it is necessary to analyze the genetic structure and genetic relationships of maize inbred lines. Based on the analysis of 40 SSR loci, the genetic structure and genetic relationships of 224 maize inbred lines from Shanxi were analyzed. A total of 171 alleles were detected with 4.28 alleles per locus. The average of the PIC, MI and gene diversity was 0.44, 2.02 and 0.50 respectively. There were 9 unique alleles among 9 SSR loci. These lines could be divided into three groups by model-based cluster method, which were Reid, Lancaster and SPT. According to the result of genetic structure component (Q-value), there were some cross-group inbred lines in each group. The 224 lines could be divided into 4 groups by distance-based cluster method, which were Reid, Lancaster, SPT and Others. About 90% inbreed lines were included in Reid group and Lancaster group. This study also discussed the choice of tester for heterotic groups, the types of SSR markers and cluster methods of heterotic grouping in maize commercial breeding. The study could provide a basis for the improvement of inbreed lines and the selection of new hybrid combinations in maize commercial breeding.

Key words

maize / inbreed lines / SSR / genetic structure / genetic relationship

Cite this article

Download Citations
LI Rui , SHANG Xiao , SHANG Chunshu , CHANG Lifang , YAN Lei , BAI Jianrong. 224 Maize Inbred Lines from Shanxi: Genetic Structure and Genetic Relationships Based on SSR Markers by Fluorescence Detection. Chinese Agricultural Science Bulletin. 2022, 38(5): 9-16 https://doi.org/10.11924/j.issn.1000-6850.casb2021-0281

References

[1]
张彦良. 山西省玉米种植生态条件与区域划分[J]. 中国种业, 2015(3):7-8.
[2]
刘东军, 张宏纪, 张举梅, 等. 91份俄罗斯玉米自交系的遗传多样性分析[J]. 核农学报, 2016, 30(11):2112-2118.
[3]
赵旭, 方永丰, 王汉宁. 玉米SSR标记杂优类群划分及群体遗传结构分析[J]. 核农学报, 2013, 27(12):1828-1838.
[4]
杨文鹏, 关琦, 杨留启, 等. 贵州70份玉米自交系的SSR标记遗传多样性及其杂种优势群分析[J]. 植物遗传资源学报, 2011, 12(2):241-248.
[5]
林峰, 梁帅强, 周玲, 等. 玉米自交系的遗传多样性分析及杂种优势群划分[J]. 江苏农业科学, 2015, 43(11):107-109.
[6]
刘俊, 尹晓红, 郭志富, 等. 170份玉米自交系的SSR遗传多样性及杂种优势群分析[J]. 湖北农业科学, 2014, 53(6):1256-1258.
[7]
吉琼, 张新玲, 童婷, 等. 利用标记研究个玉米自交系的遗传多样性及其群体遗传结构[J]. 新疆农业大学学报, 2012, 35(2):99-106.
[8]
WANG Y, ZHAO S S, WANG L, et al. Population structure and linkage disequilibrium of a minicore set of maize inbred lines in China[J]. Theoretical and applied genetics, 2008, 117(7):1141-1153.
[9]
XIE C X, ZHANG S H, LI M H, et al. Inferring genome acestry and estimating molecular relatedness among 187 Chinese maize inbred lines[J]. Journal of genetics and genomics, 2007, 34(8):738-748.
[10]
XIE C X, WARBURTON M, LI M H, et al. Analysis of population structure and linkage disequilibrium using multi locus data in 187 maize inbred lines[J]. Molecular breeding, 2008, 21(4):407-418.
[11]
吴承来, 张倩倩, 董炳雪, 等. 中国部分玉米自交系遗传关系和遗传结构解析[J]. 作物学报, 2010, 36(11):1820-1831.
玉米自交系遗传关系和遗传结构的解析,对自交系类群划分和杂交组配具有重要的指导意义。本文选用玉米基因组的112个SSR标记对我国97个玉米自交系进行遗传关系和遗传结构分析,并评价了遗传距离聚类和模型聚类方法在玉米自交系遗传关系研究中的应用价值。结果表明,模型聚类方法更适于玉米自交系的遗传关系研究。解析自交系的遗传基础发现,各类群中均有大量自交系含有其他类群的遗传成分。根据模型聚类结果,97个自交系被划分为PB、Reid、塘四平头和旅大红骨4个类群。Reid群与旅大红骨群的遗传关系最近,与塘四平头群遗传关系最远。为了实现杂种优势模式的简化,4个类群可被简化为3大种质类群[A(旅大红骨群与Reid群)、B(PB群)、C(塘四平头群)],或2大种质类群[A(旅大红骨群、Reid群、PB群)、B(塘四平头群)]。研究结果为自交系的改良和利用及杂种优势模式确定提供了理论基础。
[12]
李新海, 袁力行, 李晓辉, 等利用SSR标记划分70份中国玉米自交系的杂种优势群[J]. 中国农业科学, 2003, 36(6):622-627.
[13]
刘志斋, 吴迅, 刘海利, 等. 基于40个核心SSR标记揭示的820份中国玉米重要自交系的遗传多样性与群体结构[J]. 中国农业科学, 2012, 45(11):2107-2138.
[14]
易红梅, 王凤格, 赵久然, 等. 玉米品种SSR标记毛细管电泳荧光检测法与变性PAGE银染检测法的比较研究[J]. 华北农学报, 2006, 21(5):61-67.
[15]
郝晨阳, 王兰芬, 贾继增, 等. SSR荧光标记和银染技术的比较分析[J]. 作物学报, 2005, 31(12):144-149.
[16]
张全芳, 梁水美, 李燕, 等. 基于荧光SSR标记的玉米自交系遗传结构解析[J]. 植物遗传资源学报, 2017, 18(1):19-31.
[17]
张鹏, 管俊娇, 黄清梅, 等. 42份云南玉米自交系基于SSR荧光标记的遗传多样性分析[J]. 江西农业学报, 2019, 31(10):29-33.
[18]
寇淑君, 霍阿红, 付国庆, 等. 利用荧光SSR分析中国糜子的遗传多样性和群体遗传结构[J]. 中国农业科学, 2019, 52(9):1475-1487.
[19]
郑永胜, 张晗, 王东建, 等. 基于荧光检测技术的小麦品种SSR鉴定体系的建立[J]. 中国农业科学, 2014, 47(19):3725-3735.
[20]
程本义, 夏俊辉, 龚俊义, 等. SSR荧光标记毛细管电泳检测法在水稻DNA指纹鉴定中的应用[J]. 中国水稻科学, 2011, 25(6):672-676.
[21]
陈雅琼, 李凤霞, 李锡坤, 等. 烟草SSR荧光标记与毛细管电泳检测技术研究[J]. 中国烟草科学, 2011, 32(2):66-70,80.
[22]
颜磊, 范清杰, 肖丹. 毛细管电泳荧光检测模式的研究进展[J]. 化学研究与应用, 2009, 21(5):608-613.
[23]
桑付明, 任秀莲, 潘建新, 等. 高效毛细管电泳-激光诱导荧光技术在荧光标记DNA分析中的研究进展[J]. 分析测试学报, 2009, 28(9):1100-1104.
[24]
李锐, 王秀红, 张丛卓, 等. 144份甜玉米群体的遗传多样性分析[J]. 作物杂志, 2018(2):17-24.
[25]
中华人民共和国农业行业标准(NY/T 1432—2014《玉米品种鉴定DNA指纹方法》).
[26]
SAGHAI-MAROOF M A, SOLIMAN K, JORGENSEN R A, et al. Ribosomal DNA spacer length polymorphism in barley: Mende-lian inheritance, chromosomal location and population dynamics[J]. Proc natl acad sci USA, 1984, 81:8014-8018.
[27]
马忠强. 中国玉米商业化育种发展近况、发展方向及对策[J]. 种子世界, 2015(4):1-2.
[28]
董占山, 卢洪, 柴宇超, 等. 中国特色的玉米商业育种体系构建[J]. 玉米科学, 2015, 23(1):1-9.
[29]
孙友位, 李明顺, 张德贵, 等. 利用SSR标记研究85份玉米自交系的遗传多样性[J]. 玉米科学, 2007, 15(6):19-26.
[30]
张世煌. 商业育种只需要两个杂种优势群[J]. 种子科技, 2014(7):7-8.
[31]
张世煌. 玉米种质创新和商业育种策略[J]. 玉米科学, 2006, 14(4):1-3,6.
[32]
李明顺, 谢传晓, 张世煌. 提高玉米育种效率的技术途径与策略[J]. 作物杂志, 2007(1):4-7.
[33]
王凤格, 赵久然, 戴景瑞, 等. 玉米通用SSR核心引物筛选及高通量多重PCR复合扩增体系建立[J]. 科学通报, 2006, 51(23):2738-2746.
[34]
王凤格, 杨扬, 易红梅, 等. 中国玉米审定品种标准SSR指纹库的构建[J]. 中国农业科学, 2017, 50(1):1-14.

RIGHTS & PERMISSIONS

Copyright reserved © 2022. Chinese Agricultural Association Bulletin. All articles published represent the opinions of the authors, and do not reflect the official policy of the Chinese Agricultural Association or the Editorial Board, unless this is clearly specified.
Share on Mendeley
PDF(2023 KB)

Collection(s)

Reviews

Accesses

Citation

Detail

Sections
Recommended

/