
Effects of Freeze-thaw on Soil Nitrogen Conversion: Research Progress
Yu He, Xie Hongbao, Chen Yimin, Wang Yao, Sui Yueyu, Jiao Xiaoguang
Effects of Freeze-thaw on Soil Nitrogen Conversion: Research Progress
Nitrogen is one of the important nutrients limiting plant growth, and its transformation degree in soil is affected by many factors. As an important driving force for soil N transformation in mid, high latitude or high altitude areas, the effects of freeze-thaw also has a great impact on the process of soil N transformation. Based on existing research results at home and abroad, this paper summarized the effects of soil freeze-thaw cycles, freeze duration and freeze intensity on the process of soil N transformation. We summed up the general rules of soil N transformation caused by the changes of freeze-thaw patterns: changes in freezing and thawing patterns were all conducive to the mineralization of soil N. The increase of freeze-thaw intensity could significantly increase the content of soil nitrate N. Changes in freeze-thaw patterns will also increase N2O emissions.
effect of freeze-thaw / freeze-thaw frequency / freeze-thaw duration / freeze-thaw strength / nitrogen mineralization {{custom_keyword}} /
[1] |
陈哲, 杨世琦, 张晴雯, 等. 冻融对土壤氮素损失及有效性的影响[J]. 生态学报, 2016, 36(4):1083-1094.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[2] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[3] |
张科利, 刘宏远. 东北黑土区冻融侵蚀研究进展与展望[J]. 中国水土保持科学, 2018, 16(1):17-24.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[4] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[5] |
伍星, 刘慧峰, 张令能, 等. 雪被和土壤水分对典型半干旱草原土壤冻融过程中CO2和N2O排放的影响[J]. 生态学报, 2014, 34(19):5484-5493.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[6] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[7] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[8] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[9] |
张中琼, 吴青柏. 气候变化情景下青藏高原多年冻土活动层厚度变化预测[J]. 冰川冻土, 2012, 34(3):505-511.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[10] |
张宝贵, 张威, 刘光琇, 等. 冻融循环对青藏高原腹地不同生态系统土壤细菌群落结构的影响[J]. 冰川冻土, 2012, 34(6):1499-1507.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[11] |
蔡延江, 王小丹, 丁维新, 等. 冻融对土壤氮素转化和N2O排放的影响研究进展[J]. 土壤学报, 2013, 50(5):1032-1042.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[12] |
陈伏生, 曾德慧, 何兴元. 森林土壤氮素的转化与循环[J]. 生态学杂志, 2004(5):126-133.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[13] |
张海欧, 韩霁昌, 张扬, 等. 冻融交替对砒砂岩与沙复配土壤氮素的影响[J]. 水土保持通报, 2017, 37(6):22-27.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[14] |
吕欣欣, 孙海岩, 汪景宽, 等. 冻融交替对土壤氮素转化及相关微生物学特性的影响[J]. 土壤通报, 2016, 47(5):1265-1272.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[15] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[16] |
周幼吾, 郭东信, 邱国庆. 中国冻土[M]. 北京: 科学出版社, 2000.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[17] |
郑思嘉. 莫莫格湿地冻融期土壤水热变化及氮转化关系的研究[D]. 长春:吉林农业大学, 2019.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[18] |
贾国晶, 周永斌, 代力民, 等. 冻融对长白山森林土壤碳氮矿化的影响[J]. 生态环境学报, 2012, 21(4):624-628.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[19] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[20] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[21] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[22] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[23] |
李源. 东北黑土氮素转化和酶活性对水热条件变化的响应[D]. 长春:东北师范大学, 2015.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[24] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[25] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[26] |
胡霞, 尹鹏, 王智勇, 等. 雪被厚度和积雪周期对土壤氮素动态影响的初步研究[J]. 生态环境学报, 2014, 23(4):593-597.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[27] |
周旺明, 秦胜金, 刘景双, 等. 沼泽湿地土壤氮矿化对温度变化及冻融的响应[J]. 农业环境科学学报, 2011, 30(4):806-811.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[28] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[29] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[30] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[31] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[32] |
徐欢, 王芳芳, 李婷, 等. 冻融交替对土壤氮素循环关键过程的影响与机制研究进展[J]. 生态学报, 2020, 40(10):3168-3182.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[33] |
宋长春, 王毅勇, 王跃思, 赵志春. 季节性冻融期沼泽湿地CO2、CH4和N2O排放动态[J]. 环境科学, 2005(4):7-12.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[34] |
刘晶静, 吴伟祥, 丁颖, 等. 氨氧化古菌及其在氮循环中的重要作用[J]. 应用生态学报, 2010, 21(8):2154-2160.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[35] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[36] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[37] |
殷睿, 蒋先敏, 徐振锋, 等. 季节性雪被对川西亚高山岷江冷杉林冬季土壤氮矿化和淋溶的影响[J]. 水土保持学报, 2013, 27(5):138-143.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[38] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[39] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[40] |
徐俊俊, 吴彦, 张新全, 等. 冻融交替对高寒草甸土壤微生物量氮和有机氮组分的影响[J]. 应用与环境生物学报, 2011, 17(1):57-62.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[41] |
Snow cover is projected to decline during the next century in many ecosystems that currently experience a seasonal snowpack. Because snow insulates soils from frigid winter air temperatures, soils are expected to become colder and experience more winter soil freeze-thaw cycles as snow cover continues to decline. Tree roots are adversely affected by snowpack reduction, but whether loss of snow will affect root-microbe interactions remains largely unknown. The objective of this study was to distinguish and attribute direct (e.g., winter snow- and/or soil frost-mediated) vs. indirect (e.g., root-mediated) effects of winter climate change on microbial biomass, the potential activity of microbial exoenzymes, and net N mineralization and nitrification rates. Soil cores were incubated in situ in nylon mesh that either allowed roots to grow into the soil core (2 mm pore size) or excluded root ingrowth (50 μm pore size) for up to 29 months along a natural winter climate gradient at Hubbard Brook Experimental Forest, NH (USA). Microbial biomass did not differ among ingrowth or exclusion cores. Across sampling dates, the potential activities of cellobiohydrolase, phenol oxidase, and peroxidase, and net N mineralization rates were more strongly related to soil volumetric water content (P < 0.05; R = 0.25-0.46) than to root biomass, snow or soil frost, or winter soil temperature (R< 0.10). Root ingrowth was positively related to soil frost (P < 0.01; R = 0.28), suggesting that trees compensate for overwinter root mortality caused by soil freezing by re-allocating resources towards root production. At the sites with the deepest snow cover, root ingrowth reduced nitrification rates by 30% (P < 0.01), showing that tree roots exert significant influence over nitrification, which declines with reduced snow cover. If soil freezing intensifies over time, then greater compensatory root growth may reduce nitrification rates directly via plant-microbe N competition and indirectly through a negative feedback on soil moisture, resulting in lower N availability to trees in northern hardwood forests.© 2016 by the Ecological Society of America.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[42] |
王风, 朱岩, 陈思, 等. 冻融循环对典型地带土壤速效氮磷及酶活性的影响[J]. 农业工程学报, 2013, 29(24):118-123.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[43] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[44] |
胡仲豪. 冻融过程对天山森林土壤氮素动态及氮矿化速率的影响[D]. 乌鲁木齐:新疆大学, 2018.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[45] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[46] |
韩瑛. 典型黑土区土壤温室气体排放特征研究[D]. 哈尔滨:东北林业大学, 2014.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[47] |
杨红露, 秦纪洪, 孙辉. 冻融交替对土壤CO2 及N2O效应的研究进[J]. 土壤, 2010, 42(4):519-525.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[48] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[49] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[50] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[51] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[52] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[53] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[54] |
徐星凯, 段存涛, 吴浩浩, 等. 冻结强度和冻结时间对高寒区温带森林土壤微生物量、可浸提的碳和氮含量及N2O和CO2排放量的影响[J]. 中国科学:地球科学, 2015, 45(11):1698-1716.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[55] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[56] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[57] |
孙辉, 秦纪洪, 吴杨. 土壤冻融交替生态效应研究进展[J]. 土壤, 2008(4):505-509.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
Collection(s)
/
〈 |
|
〉 |