
Effects of Different Feeding Rates on Growth, Water Quality and Microbial Community Metabolic Diversity of Cultured Tilapia
Dong Xinxu, Fan Limin, Song Chao, Zheng Yao, Qiu Liping, Meng Shunlong, Chen Jiazhang
Effects of Different Feeding Rates on Growth, Water Quality and Microbial Community Metabolic Diversity of Cultured Tilapia
To study the effects of different feeding rates on the growth, water physicochemical indexes and microbial community metabolic diversity of cultured tilapia, 16±0.20 g Oreochromis niloticus was used as the research object, the effects of different feed rates on tilapia growth and water quality indicators were explored. Biolog-ECO method was used to detect the utilization of 31 carbon sources by microorganisms in culture water samples, to study the differences of microbial metabolic diversity under different feeding rates. The results showed that the tilapia with 4% feeding rate had the lowest feed coefficient and relatively high feed utilization rate; high feeding rate had a relatively great impact on water quality, and different feeding rates had an impact on microbial metabolic diversity in aquaculture water; the Shannon index of 4% feeding rate was relatively high, and there were more kinds of microorganisms in water; Pearson correlation analysis showed that COD, TN, TP, NH3-N had strong positive correlations (P<0.05) with water microbial metabolic diversity metabolism of β-methyl-D-glucoside, glucose-1-phosphate, glycyl-L-glutamic acid. In the process of tilapia culture, considering both ecological and economic benefits, we should feed the tilapia with proper feeding rates, the feeding rate with the initial tilapia size of about 16g is around 4%.
different feeding rates / tilapia / growth effect / water physicochemical indexes / microbial community metabolic diversity {{custom_keyword}} /
[1] |
张宗锋. 以湛江、茂名海南为例探究我国凡纳滨对虾、罗非鱼养殖现状及面临的问题[D]. 上海:上海海洋大学, 2012.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[2] |
张君. 罗非鱼池塘养殖技术[J]. 水产养殖, 2020, 41(10):65-66.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[3] |
赵雲, 桂朗, 陈良标. 罗非鱼产业发展现状[J]. 中国水产, 2020(10):46-48.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[4] |
解晓峰, 戴小刚. 当今中国水产养殖业生态问题浅析[J]. 江西水产科技, 2020(4):41-42.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[5] |
刘欢. 我国水产养殖业生态化研究[D]. 南京:南京林业大学, 2014.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[6] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[7] |
覃希. 投喂频率和投喂水平对吉富罗非鱼幼鱼生长性能和生理机能的影响[D]. 南宁:广西大学, 2014.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[8] |
徐革锋, 刘洋, 李永发, 等. 不同投喂率对细鳞鲑(Brachymystax lenok)幼鱼生长及体成分的影响[J]. 海洋与湖沼, 2013, 44(2):433-437.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[9] |
席劲瑛, 胡洪营, 钱易. Biolog方法在环境微生物群落研究中的应用[J]. 微生物学报, 2003(1):138-141.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[10] |
The BLOLOG redox technology based on tetrazolium dye reduction as an indicator of sole-carbon-source utilization was evaluated as a rapid, community-level method to characterize and classify heterotrophic microbial communities. Direct incubation of whole environmental samples (aquatic, soil, and rhizosphere) in BIOLOG plates containing 95 separate carbon sources produced community-dependent patterns of sole-carbon-source utilization. Principal-component analysis of color responses quantified from digitized images of plates revealed distinctive patterns among microbial habitats and spatial gradients within soil and estuarine sites. Correlation of the original carbon source variables to the principal components gives a functional basis to distinctions among communities. Intensive spatial and temporal analysis of microbial communities with this technique can produce ecologically relevant classifications of heterotrophic microbial communities.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[11] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[12] |
国家环境保护总局编. 水和废水监测分析方法[M].4版. 北京: 中国环境科学出版社, 2002.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[13] |
闫法军, 田相利, 董双林, 等. 刺参养殖池塘水体微生物群落功能多样性的季节变化[J]. 应用生态学报, 2014, 25(5):1499-1505.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[14] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[15] |
周晴. 不同投饲模式对池塘养殖新吉富罗非鱼生长效应、水质因子及养殖效益的影响[D]. 南宁:广西大学, 2015.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[16] |
史磊磊, 范立民, 陈家长, 等. 组合填料对水质、罗非鱼生长及水体微生物群落功能多样性的影响[J]. 农业环境科学学报, 2017, 36(8):1618-1626.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[17] |
杨莺莺, 李卓佳, 梁晓华, 等. 芽胞杆菌对鱼池微生物群落代谢功能的影响[J]. 微生物学杂志, 2009, 29(3):11-17.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[18] |
曹煜成, 李卓佳, 文国樑, 等. 罗非鱼主养池塘水体微生物群落对碳源代谢的动态变化[J]. 农业环境科学学报, 2014, 33(1):172-177.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[19] |
We compared the abilities of Biolog's GN and ECO plates to distinguish among aerobic and heterotrophic bacterial communities in samples from six aquatic environments. The Biolog system is based on interpreting patterns of sole-carbon substrate utilization indicated by color development in a 96-well microtiter plate. Whether of fresh or saltwater origin, bacterial communities utilized > 95% of substrates in both types of plates. Samples from any one environment exhibited similar time courses of average well color development (AWCD) in both GN and ECO plates. Principal component analysis was performed on data sets resulting from combinations of algorithms (AWCD and curve-integration methods) and levels of color development (end-point and set-point approaches). In all cases, the two types of plates demonstrated an equal capacity to discriminate among the heterotrophic expressions of the six microbial communities. Substantial deviation from an anticipated 1:1 correspondence occurred when color development of 25 substrates common to both types of plates was compared. The discrepancies likely are related to the different formulations of low-nutrient media in GN and ECO plates.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[20] |
范立民, 杨光, 董媛媛, 等. 克氏原螯虾-水稻连作对土壤微生物功能多样性的影响[J]. 中国农学通报, 2020, 36(30):55-61.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[21] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[22] |
李志斐, 王广军, 谢骏, 等. 草鱼养殖池塘生物膜固着微生物群落碳代谢Biolog分析[J]. 水产学报, 2014, 38(12):1985-1995.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[23] |
杜海明. 投喂策略对鳡幼鱼摄食、生长及体成分的影响[D]. 武汉:华中农业大学, 2007.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[24] |
冬梅, 杜煜光. 生物合成法生产D-甘露醇的研究进展[J]. 农产品加工.学刊, 2008(1):36-39.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[25] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[26] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[27] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[28] |
杜瑞英, 柏珺, 王诗忠, 等. 多金属污染土壤中微生物群落功能对麻疯树-化学联合修复的响应[J]. 环境科学学报, 2011, 31(3):575-582.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[29] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[30] |
宋海刚. 水产养殖存在的问题和应对措施[J]. 江西水产科技, 2018(05):55-56.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[31] |
田相利, 郑瑶瑶, 柳炳俊, 等. 草鱼混养系统细菌数量变动和群落功能多样性研究[J]. 中国海洋大学学报:自然科学版, 2012, 42(11):19-27.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[32] |
陈在新, 王文一. 影响鱼类生长的水质因子机理与控制[J]. 畜牧与饲料科学, 2009, 30(1):15-17.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[33] |
陈佳毅, 孙龙生, 吴骏, 等. 氨氮和亚硝氮对不同发育阶段罗氏沼虾幼体的急性毒性研究[J]. 水产养殖, 2015, 36(10):1-6.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |