
Evaluation of Damage Caused by Fish Pump Based on Principal Component Analysis
Shan Jianjun, Guan Chongwu, Song Hongqiao, Liu Shijing, Hong Yang, Zhuang Baolu
Evaluation of Damage Caused by Fish Pump Based on Principal Component Analysis
To provide technical parameters for the research and improvement of fish pump, the damage comprehensive evaluation method of vacuum fish pump was established by means of Principal Component Analysis (PCA). Experiments on Carassius auratus were carried out by vacuum fish pump to obtain fish body damage data. A comprehensive injury evaluation model was established by measuring the injured surface area ratio, 24-hour survival rate, red blood cell number, white blood cell number, superoxide dismutase activity, alanine aminotransferase activity and creatinine content. The results showed that the cumulative contribution rate of three principal components extracted by PCA was 78.232%, which could represent most of the fish damage. The comprehensive evaluation model of fish damage by vacuum fish pump was F=0.285X1+0.111X2+0.316X3+0.366X4-0.118X5+0.234X6. There was no significant damage to the surface and viscera of fish by vacuum fish pump, and the comprehensive score was -0.102, which was close to that of the control group, indicating that the damage effect of vacuum fish pump on fish was very small. The results of experiments show that SOD activity, white blood cell count and body surface damage area ratio are the data indexes that have great influence on damage evaluation. The comprehensive damage evaluation model established by PCA can be used as a feasible method to evaluate the damage of fish, which provides a powerful reference for the improvement of fish suction pump.
vacuum fish pump / Carassius auratus / damage assessment / principal component analysis / comprehensive evaluation model {{custom_keyword}} /
表1 试验分组条件 |
组别 | 重复经吸鱼泵次数 | 备注 |
---|---|---|
A组 | 1次 | 随机选取 |
B组 | 2次 | 选取损伤程度较高的鱼 |
C组 | 5次 | 选取损伤程度较高的鱼 |
对照组 | 0次 | 随机选取 |
表2 试验组和对照组的损伤指标变化情况 |
组别 | 体表损伤面积比/% | 红细胞数/(×1011个/L) | 白细胞数/(×109个/L) | SOD活力/(U/mL) | ALT活力/(U/L) | Cr含量/(μmol/L) | 存活率/% |
---|---|---|---|---|---|---|---|
A组 | 0.78±0.24c | 16.25±4.62a | 5.33±1.06b | 258.53±27.25ab | 1.72±0.47b | 46.39±11.46a | 100 |
B组 | 1.59±0.42b | 14.83±1.24ab | 6.96±2.83ab | 285.75±23.06a | 1.87±0.47b | 42.38±15.60a | 100 |
C组 | 4.10±1.13a | 11.23±2.53b | 12.17±4.69a | 247.92±57.24ab | 2.01±0.54b | 40.28±7.91a | 100 |
对照组 | 0.51±0.30c | 13.68±3.36ab | 7.73±2.66ab | 222.79±38.76b | 3.35±1.35a | 52.45±16.90a | 100 |
注:同列数据上标不同小写字母表示差异显著(P<0.05)。 |
表3 解决的总方差 |
成份 | 初始特征值 | 提取平方和载入 | ||||
---|---|---|---|---|---|---|
合计 | 方差/% | 累积/% | 合计 | 方差/% | 累积/% | |
F1 | 2.080 | 34.659 | 34.659 | 2.080 | 34.659 | 34.659 |
F2 | 1.527 | 25.451 | 60.110 | 1.527 | 25.451 | 60.110 |
F3 | 1.087 | 18.122 | 78.232 | 1.087 | 18.122 | 78.232 |
F4 | 0.607 | 10.115 | 88.347 | - | - | - |
F5 | 0.542 | 9.029 | 97.376 | - | - | - |
F6 | 0.157 | 2.624 | 100.000 | - | - | - |
表4 主成分载荷矩阵 |
相关系数 | 成份 | ||
---|---|---|---|
F1 | F2 | F3 | |
体表损伤面积比(X1) | 0.891 | 0.019 | 0.027 |
红细胞数RBC(X2) | -0.429 | 0.611 | 0.369 |
白细胞数WBC(X3) | 0.840 | -0.144 | 0.435 |
SOD活力(X4) | 0.241 | 0.699 | 0.484 |
ALT活力(X5) | -0.079 | -0.766 | 0.486 |
Cr含量(X6) | -0.575 | -0.239 | 0.540 |
表5 综合得分及排序 |
组别 | 综合得分 | 排序 |
---|---|---|
对照组 | -0.477 | 4 |
A组 | -0.102 | 3 |
B组 | 0.302 | 2 |
C组 | 0.755 | 1 |
[1] |
农业农村部渔业渔政管理局, 全国水产技术推广总站, 中国水产学会. 中国渔业统计年鉴(2020)[M]. 北京: 中国农业出版社,2020:Ⅰ-Ⅳ.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[2] |
陈晓龙, 田昌凤, 刘兴国, 等. 吸鱼泵的研究进展与发展建议[J]. 渔业现代化, 2020, 47(4):1-5.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[3] |
楚树坡, 谌志新, 谭永明, 等. 基于SolidWorks的双流道吸鱼泵三维实体造型研究[J]. 渔业现代化, 2018, 45(3):55-60.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[4] |
刘平, 林礼群, 徐志强, 等. 基于CFturbo的离心式吸鱼泵设计[J]. 渔业现代化, 2019, 46(4):31-35.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[5] |
徐茂森, 龙新平, 牟介刚, 等. 喉管与喷嘴截面积比对射流式鱼泵输送性能及鱼损的影响[J]. 农业工程学报, 2019, 35(9):285-290.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[6] |
Environmental Technologies Incorporated of America. Fish Transfer System [EB/OL]. (2012-11-20). http://www.transvac.com
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[7] |
Inventive Marine Products Limited of Canada. CanaVac Fish Pumps [EB/OL]. (2012-11-20). http://inventivemarine.com/canavac
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[8] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[9] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[10] |
徐茂森, 龙新平, 祝叶, 等. 射流式鱼泵输送草鱼的性能研究[J]. 南方水产科学, 2017, 13(1):117-123.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[11] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[12] |
吴宁, 李莉, 侯杰, 等. 射流式鱼泵胁迫下草鱼的应激响应[J]. 华中农业大学学报, 2016, 35(5):75-83.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[13] |
赵兴华, 李泽利, 贾冰莹, 等. 不同评价方法在地下水源水质评价中的应用——以天津市为例[J]. 农业资源与环境学报, 2021, 38(4):7.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[14] |
程一鑫, 王煜, 王继保. 水轮机内负压对鲢鱼幼鱼损伤阈值模拟试验[J]. 三峡大学学报:自然科学版, 2017, 39(4):22-26.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[15] |
徐茂森, 黄斌, 牟介刚, 等. 高速摄影技术分析射流式鱼泵流量对鱼运动规律影响[J]. 农业工程学报, 2019, 35(17):74-78.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[16] |
黄鸾玉, 吴祥庆, 庞燕飞, 等. 主成分分析法综合评价水产品营养价值[J]. 食品科技, 2018, 43(2):175-179.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[17] |
黄鸾玉, 黎小正, 吴祥庆, 等. 采用主成分分析法评价廉州湾贝类养殖区水质状况[J]. 渔业现代化, 2017, 44(1):69-74.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[18] |
赵晚晨, 秦秀东, 程光平, 等. 基于主成分分析的5种投饲率黄颡鱼养殖塘水质评价[J]. 广东农业科学, 2019, 46(7):144-155.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[19] |
陈胜军, 刘先进, 杨贤庆, 等. 不同产地鲍鱼特征元素分析与主成分评价模型的建立[J]. 渔业科学进展, 2019, 40(2):83-90.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[20] |
陈英义, 程倩倩, 方晓敏, 等. 主成分分析和长短时记忆神经网络预测水产养殖水体溶解氧[J]. 农业工程学报, 2018, 34(17):183-191.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[21] |
公丽艳, 孟宪军, 刘乃侨, 等. 基于主成分与聚类分析的苹果加工品质评价[J]. 农业工程学报, 2014, 30(13):276-285.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[22] |
龚珞军, 熊邦喜, 周敏, 等. 主成分分析方法在渔业上的应用[J]. 淡水渔业, 2005(增刊1):52-54.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[23] |
罗伟, 李文红, 庞洋洋, 等. 淡水鱼塘水体污染的主成分分析[J]. 水产科学, 2016, 35(2):136-141.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[24] |
朱浩, 刘兴国, 吴宗凡, 等. 基于主成分分析法的底质改良机运行效果评价[J]. 江苏农业科学, 2015, 43(10):468-471.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[25] |
王伟. 大型远洋围拖网渔船吸鱼泵设计与研究[D]. 舟山:浙江海洋大学, 2017.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[26] |
孙翰昌, 杨帆, 郭玉阳. 斑点叉尾血液学指标及血细胞特点分析[J]. 江苏农业科学, 2019, 47(4):128-131.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[27] |
林浩然. 鱼类生理学[M]. 广州: 中山大学出版社, 2011:154-157.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[28] |
管崇武, 宋红桥, 杨菁, 等. 水色和透明度对循环水养殖凡纳滨对虾生长及生理指标的影响[J]. 渔业现代化, 2019, 46(5):35-40.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[29] |
田兴, 马玲巧, 李大鹏, 等. 运输对养殖黄颡鱼血液生化和肌肉物性分析指标的影响[J]. 淡水渔业, 2016, 46(3):87-91,98.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[30] |
施兆鸿, 张艳亮, 高权新, 等. 云纹石斑鱼幼鱼血清生化指标对低温胁迫的响应[J]. 生态学杂志, 2015, 34(8):2222-2228.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[31] |
王博, 秦海鹏, 廖栩峥, 等. 养殖密度对生物絮团养殖系统中墨吉明对虾免疫、生长和水质的影响[J]. 渔业现代化, 2019, 46(6):61-67.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[32] |
白婵, 熊光权, 黄敏, 等. 丁香酚麻醉斑点叉尾鮰在不同无水保活温度下的生理生化变化[J]. 渔业现代化, 2019, 46(1):60-66.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
Collection(s)
/
〈 |
|
〉 |