
Crop Growth Monitoring with Digital Images: A Review
Zhao Xinxin, Chen Huanxuan, Han Yingchun, Li Yabing, Feng Lu
Crop Growth Monitoring with Digital Images: A Review
In order to carry out the quantitative management and the growth monitoring of the crop in field, this paper discussed the methods of digital image acquisition, digital image analysis and processing, and digital image crop growth index monitoring, summarized the basic principles, the acquisition and method of digital image, and concluded that the digital image could be used to monitor the crop coverage, leaf area index, biomass and nitrogen nutrition. It is suggested that the acquisition standard of digital image should be clear, the analysis method should be selected according to the specific situation, and at the same time, expert system should be used to evaluate crop growth from multiple perspectives in the future, so as to achieve the precise management of the crops.
digital image / crop / growth characteristics / feature parameter / monitoring {{custom_keyword}} /
[1] |
黄艳平, 马松林. 改革开放40年我国耕地面积变动趋势研究[J]. 粮食科技与经济, 2018,43(9):79-81,108.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[2] |
王向东, 沈孝强, 王振波, 等. 中国耕地集约化利用评价2010—2016[J]. 中国人口·资源与环境, 2019,29(4):61-70.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[3] |
吴素霞, 毛任钊, 李红军, 等. 中国农作物长势遥感监测研究综述[J]. 中国农学通报, 2005,21(3).
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[4] |
曹卫星, 朱艳, 汤亮, 等. 数字农作技术[M]. 北京: 中国科技出版社, 2008: 363.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[5] |
刘继承, 姬长英. 作物长势监测的应用研究现状与展望[J]. 江西农业学报, 2007,19(3):17-20.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[6] |
杨邦杰, 裴志远. 农作物长势的定义与遥感监测[J]. 农业工程学报, 1999,15(3):214-218.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[7] |
何东健. 数字图像处理[M]. 西安: 电子科技大学出版社, 2003: 20.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[8] |
单成钢, 廖树华, 龚宇, 等. 应用数字图像技术估测冬小麦冠层生物量垂直分布特征的研究[J]. 作物学报, 2007(3):419-424.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[9] |
张薇, 于硕. 数字图像处理综述[J]. 通讯世界, 2015(18):258-259.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[10] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[11] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[12] |
王远, 王德建, 张刚, 等. 基于数码相机的水稻冠层图像分割及氮素营养诊断[J]. 农业工程学报, 2012,28(17):131-136.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[13] |
张珏, 田海清, 李哲, 等. 基于数码相机图像的甜菜冠层氮素营养监测[J]. 农业工程学报, 2018,34(1):157-163.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[14] |
王康. 基于磁导引的履带式小车作物图像自动采集系统研究[D]. 武汉:华中农业大学, 2019.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[15] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[16] |
张超, 王正, 姚青, 等. 便携式农业病虫害图像采集仪设计与应用[J]. 浙江农业科学, 2016,57(12):2077-2081.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[17] |
肖德琴, 黄顺彬, 殷建军, 等. 基于嵌入式应用的高分辨率农业图像采集节点设计[J]. 农业机械学报, 2014,45(2):276-281.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[18] |
李毅念, 杜世伟, 姚敏, 等. 基于小麦群体图像的田间麦穗计数及产量预测方法[J]. 农业工程学报, 2018,34(21):193-202.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[19] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[20] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[21] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[22] |
张慧春, 李杨先, 周宏平, 等. 植物表型平台与图像分析技术研究进展与展望[J]. 农业机械学报, 2020(3).
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[23] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[24] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[25] |
付虹雨, 崔丹丹, 崔国贤, 等. 作物图像获取、处理技术及其应用研究进展[J]. 中国麻业科学, 2019,41(5):229-239.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[26] |
潘锐, 熊勤学, 张文英. 数字图像技术及其在作物表型研究中的应用研究进展[J]. 长江大学学报:自科版, 2016,13(21):38-41,46.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[27] |
李红军, 张立周, 陈曦鸣, 等. 应用数字图像进行小麦氮素营养诊断中图像分析方法的研究[J]. 中国生态农业学报, 2011,19(1):155-159.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[28] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[29] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[30] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[31] |
Efficient detection of spatial legume dry matter (DM) contribution in legume grass mixtures is of great importance for targeted management of legume-based swards. Legume coverage may be an appropriate indicator for the contribution of legumes, because it can be assessed by on-the-go systems with digital image analysis (DIA). To examine the perspectives of DIA a pot experiment, under controlled conditions, was conducted across a wide range of legume species (white clover [Trifolium repens L.], red clover [Trifolium pretense L.], and alfalfa [Medicago sativa L.]), legume proportion (0-800 g kg(-1)), and growth stage (start of tillering to start of heading). In this study, an advanced procedure for the determination of legume DM contribution by DIA is suggested. The DIA procedure comprises the analysis of color images and applies an advanced function to predict legume DM contribution from legume coverage by considering total sward biomass. This resulted in an accurate prediction of legume contribution (grams per kilogram) with R-2 of 0.90, 0.94, and 0.93 for red clover, white clover, and alfalfa, respectively. For validation, swards of a field experiment were used. It showed that legume detection is possible, but for practical field application some further adjustments are necessary.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[32] |
孙中宇, 荆文龙, 乔曦, 等. 基于无人机遥感的盛花期薇甘菊爆发点识别与监测[J]. 热带地理, 2019(4).
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[33] |
靳思雨. 基于LS-SVR算法的水稻氮素和长势估算模型研究及应用[D]. 哈尔滨:东北农业大学, 2018.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[34] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[35] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[36] |
贾良良, 范明生, 张福锁, 等. 应用数码相机进行水稻氮素营养诊断[J]. 光谱学与光谱分析, 2009,29(8):2176-2179.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[37] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[38] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[39] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[40] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[41] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[42] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[43] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[44] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[45] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[46] |
张教海, 李亚兵, 别墅 等. 数字图像处理在棉花形态特征提取上的应用[J]. 湖北农业科学, 2007,46(3):369-371.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[47] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[48] |
韩文霆, 李敏, 陈微. 作物数字图像获取与长势诊断的方法研究[J]. 农机化研究, 2012,34(6):1-6.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[49] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[50] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[51] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[52] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[53] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[54] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[55] |
王耀南, 王绍源, 毛建旭. 基于分形维数的图像纹理分析[J]. 湖南大学学报:自然科学版, 2006,33(5):67-72.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[56] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[57] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[58] |
马晓丹, 祁广云. 基于神经网络的大豆叶片病斑的识别与研究[J]. 黑龙江八一农垦大学学报, 2006(2):84-87.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[59] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[60] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[61] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[62] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[63] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[64] |
王希群, 马履一, 贾忠奎, 等. 叶面积指数的研究和应用进展[J]. 生态学杂志, 2005(5):72-76.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[65] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[66] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[67] |
雷咏雯, 王娟, 郭金强, 等. 一种基于图像分析提取作物冠层生物学参数的方法与验证[J]. 西北农业学报, 2006,15(3):45-49.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[68] |
武聪玲. 基于计算机视觉的温室黄瓜幼苗营养无损监测研究[D]. 北京:中国农业大学, 2005.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[69] |
王方永, 王克如, 李少昆, 等. 利用数字图像估测棉花叶面积指数[J]. 生态学报, 2011,31(11):3090-3100.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[70] |
高林, 杨贵军, 李红军, 等. 基于无人机数码影像的冬小麦叶面积指数探测研究[J]. 中国生态农业学报, 2016,24(9).
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[71] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[72] |
刘帅兵, 杨贵军, 周成全, 等. 基于无人机遥感影像的玉米苗期株数信息提取[J]. 农业工程学报, 2018,34(22):69-77.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[73] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[74] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[75] |
袁媛, 陈雷, 李淼, 等. 基于数字图像技术的黄瓜缺氮营养诊断[J]. 中国农业大学学报, 2016,21(12):35-40.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[76] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[77] |
白金顺, 曹卫东, 熊静, 等. 应用数码相机进行绿肥翻压后春玉米氮素营养诊断和产量预测[J]. 光谱学与光谱分析, 2013,33(12):3334-3338.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[78] |
李岚涛, 张萌, 任涛, 等. 应用数字图像技术进行水稻氮素营养诊断[J]. 植物营养与肥料学报, 2015,21(1):259-268.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[79] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[80] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[81] |
孙扬越, 申双和. 作物生长模型的应用研究进展[J]. 中国农业气象, 2019,40(7):444-459
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[82] |
胡泊. 基于多维图像特征的农作物长势评价方法[D]. 北京:北京交通大学, 2014.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |