
Irrigation and Nitrogen Supply Methods: Effect on Leaf Physiological Characteristics and Yield of Maize
Wang Jiwei, Qi Dongliang
Irrigation and Nitrogen Supply Methods: Effect on Leaf Physiological Characteristics and Yield of Maize
The aim is to investigate the effect of different irrigation and nitrogen supply methods on leaf physiological characteristics, yield and yield components of maize. With spring maize ‘Yidan 22’ as material, leaf area index (LAI) and indexes of leaf physiological characteristics during the maize growing season and the yield under the different irrigation and nitrogen supply methods were measured. The results showed that, compared with the conventional irrigation coupled with conventional nitrogen supply method (CICN), alternate furrow irrigation coupled with conventional nitrogen (AICN) or alternate furrow irrigation coupled with alternate nitrogen supply in coordinating supply of water and nitrogen (AIANS) significantly increased LAI and chlorophyll content in ear leaf at the tasselling stage and on the 7th, 14th, 21st, 28th and 35th day after tasselling, and superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) activities and soluble protein content at the tasselling, filling and milk stages, and rows per ear, kernels per row, kernels per ear, 1000-kernel weight and grain yield (P<0.05); but significantly decreased malondialdehyde (MDA), soluble sugar and proline contents (P<0.05). Therefore, AICN and AIANS are useful to improve LAI, antioxidant enzyme activities and the relationship between production and clearance of reactive oxygen, leading to a high grain yield of maize.
irrigation / fertilization / leaf area / leaf senescence / grain yield / maize {{custom_keyword}} /
表1 试验设计 |
处理 | 灌水方式 | 施氮方式 |
---|---|---|
AIAND | 交替灌水(AI) | 交替施氮(AN) |
AIANS | 交替施氮(AN) | |
AICN | 均匀施氮(CN) | |
CIAN | 均匀灌水(CI) | 交替施氮(AN) |
CICN | 均匀施氮(CN) |
注:AIANS代表灌水和施氮在同一沟内,AIAND指灌水沟和施氮沟相反。 |
表2 灌水与施氮的时期与位置 |
时期 | 播后天数/d | 交替施氮 | 均匀施氮 | 交替灌水 | 均匀灌水 |
---|---|---|---|---|---|
播前 | -1 | 南侧沟 | 两侧沟 | ||
播后 | 2 | 两侧沟 | 两侧沟 | ||
拔节 | 40 | 南/北侧沟 | 两侧沟 | ||
大喇叭口 | 69 | 北侧沟 | 两侧沟 | 南/北侧沟 | 两侧沟 |
抽雄 | 80 | 南侧沟 | 两侧沟 | 南/北侧沟 | 两侧沟 |
灌浆 | 93 | 南/北侧沟 | 两侧沟 | ||
乳熟 | 105 | 南/北侧沟 | 两侧沟 |
注:对AIANS和AIAND,拔节期分别灌南侧沟和北侧沟。设定播种时的天数为0天。 |
表3 不同灌水施氮方式对玉米抽雄期、灌浆期和乳熟期穗位叶超氧化物歧化酶、过氧化物酶和过氧化氢酶活性的影响 |
处理 | 超氧化物歧化酶/[U/(g·min)] | 过氧化物酶/[μg/(g·min)] | 过氧化氢酶/[μmol H2O2/(g·min)] | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
抽雄期 | 灌浆期 | 乳熟期 | 抽雄期 | 灌浆期 | 乳熟期 | 抽雄期 | 灌浆期 | 乳熟期 | |||
CICN | 710c | 745c | 703c | 56.53b | 64.11c | 50.54c | 24.54b | 32.54c | 21.11c | ||
CIAN | 720c | 753c | 710c | 58.96b | 70.54c | 55.43c | 25.38b | 35.65c | 22.34c | ||
AICN | 794a | 808a | 786a | 65.87a | 81.76a | 68.75a | 30.12a | 44.87b | 27.82b | ||
AIANS | 787a | 810a | 790a | 67.82a | 85.43a | 67.11a | 32.11a | 48.14a | 28.98b | ||
AIAND | 750b | 777b | 754b | 60.53b | 76.12b | 60.45b | 30.14a | 43.13b | 35.42a |
注:同列数字不同字母表示差异性达0.05显著水平,下同。SOD、POD和CAT均按单位鲜重计。 |
表4 不同灌水施氮方式对玉米抽雄期、灌浆期和乳熟期穗位可溶性糖、可溶性蛋白和脯氨酸含量的影响 |
处理 | 可溶性糖/(mg/g) | 可溶性蛋白/(mg/g) | 脯氨酸/(mg/g) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
抽雄期 | 灌浆期 | 乳熟期 | 抽雄期 | 灌浆期 | 乳熟期 | 抽雄期 | 灌浆期 | 乳熟期 | |||
CICN | 33.12a | 37.84a | 20.17a | 15.84c | 12.34c | 6.21b | 48.45a | 77.87a | 40.11a | ||
CIAN | 34.13a | 39.55a | 20.65a | 16.43c | 13.12c | 7.08b | 47.14a | 78.14a | 39.87a | ||
AICN | 28.17c | 31.22c | 20.21a | 19.42a | 16.87a | 8.13a | 43.13c | 70.21c | 33.24b | ||
AIANS | 27.14c | 32.13c | 19.38a | 20.11a | 17.61a | 9.12a | 42.76c | 68.45c | 34.13b | ||
AIAND | 30.17b | 34.37b | 19.21a | 18.45b | 15.31b | 7.56b | 45.63b | 72.14b | 36.81b |
表5 不同灌水施氮方式对玉米产量及构成因素的影响 |
处理 | 行数 | 行粒数 | 穗粒数 | 千粒质量/g | 籽粒产量/(kg/hm2) |
---|---|---|---|---|---|
CICN | 15.5b | 19.4b | 398.7c | 290.1b | 7231c |
CIAN | 16.1b | 20.0b | 402.4c | 287.6b | 7380c |
AICN | 18.7a | 24.5a | 430.1a | 315.7a | 8219a |
AIANS | 19.1a | 25.1a | 433.4a | 313.4a | 8453a |
AIAND | 17.4b | 22.2b | 415.7b | 311.4a | 7888b |
[1] |
康绍忠, 张建华, 梁宗锁, 等. 控制性交替灌溉:一种新的农田节水思路[J]. 干旱地区农业研究, 1997,15(1):1-5.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[2] |
More than 70% of fresh water is used in agriculture in many parts of the world, but competition for domestic and industrial water use is intense. For future global food security, water use in agriculture must become sustainable. Agricultural water-use efficiency and water productivity can be improved at different points from the stomatal to the regional scale. A promising approach is the use of deficit irrigation, which can both save water and induce plant physiological regulations such as stomatal opening and reproductive and vegetative growth. At the scales of the irrigation district, the catchment, and the region, there can be many other components to a sustainable water-resources strategy. There is much interest in whether crop water use can be regulated as a function of understanding of physiological responses. If this is the case, then agricultural water resources can be reallocated to the benefit of the broader community. We summarize the extent of use and impact of deficit irrigation within China. A sustainable strategy for allocation of agricultural water resources for food security is proposed. Our intention is to build an integrative system to control crop water use during different cropping stages and actively regulate the plant's growth, productivity, and development based on physiological responses. This is done with a view to improving the allocation of limited agricultural water resources.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[3] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[4] |
Effects of partial root-zone irrigation (PRI) on the hydraulic conductivity in the soil-root system (L(sr)) in different root zones were investigated using a pot experiment. Maize plants were raised in split-root containers and irrigated on both halves of the container (conventional irrigation, CI), on one side only (fixed PRI, FPRI), or alternately on one of two sides (alternate PRI, APRI). Results show that crop water consumption was significantly correlated with L(sr) in both the whole and irrigated root zones for all three irrigation methods but not with L(sr) in the non-irrigated root zone of FPRI. The total L(sr) in the irrigated root zone of two PRIs was increased by 49.0-92.0% compared with that in a half root zone of CI, suggesting that PRI has a significant compensatory effect of root water uptake. For CI, the contribution of L(sr) in a half root zone to L(sr) in the whole root zone was approximately 50%. For FPRI, the L(sr) in the irrigated root zone was close to that of the whole root zone. As for APRI, the L(sr) in the irrigated root zone was greater than that of the non-irrigated root zone. In comparison, the L(sr) in the non-irrigated root zone of APRI was much higher than that in the dried zone of FPRI. The L(sr) in both the whole and irrigated root zones was linearly correlated with soil moisture in the irrigated root zone for all three irrigation methods. For the two PRI treatments, total water uptake by plants was largely determined by the soil water in the irrigated root zone. Nevertheless, the non-irrigated root zone under APRI also contributed to part of the total crop water uptake, but the continuously non-irrigated root zone under FPRI gradually ceased to contribute to crop water uptake, suggesting that it is the APRI that can make use of all the root system for water uptake, resulting in higher water use efficiency.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[5] |
汪耀富, 蔡寒玉, 张晓海, 等. 分根交替灌溉对烤烟生理特性和烟叶产量的影响[J]. 干旱地区农业研究, 2006,24(5):93-98.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[6] |
穆兴民. 水肥耦合效应与协同管理[M]. 北京: 中国林业出版社, 1999.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[7] |
茆智, 崔远来, 董斌, 等. 水稻高效节水与持续高产的灌排技术[J]. 水利水电技术, 2002,33(2):65-67.
我国是世界上最主要的种稻国家,全国水稻总产量及灌溉面积居粮食作物中的前列.水稻灌区的节水、高产在我国有重要现实意义.近年来,我国试验研究、开发与推广了许多种水稻节水、高产灌排技术;国外通过先进的试验手段,发现长期采用一些水稻高效节水灌溉技术可能对水土环境及产量造成一些不良影响,探讨了此影响产生的原因及避免途径.在吸取国内外先进经验基础上,通过试验研究并开发出了水稻高效节水、持续高产的灌排与施肥综合技术,以及水稻灌区用水管理决策支持系统.具体是稻田轮流淹水与落干的间歇灌技术、与此相配合而增加追肥次数的施肥制度改革措施,以及易于推广应用的稻田实时灌溉预报与渠系用水实时调配技术.这些技术是水利措施与农业措施紧密结合,既能高效节水,又能避免水土环境的不利影响,持续高产,符合农业可持续发展的要求.文中亦介绍了这些技术的推广情况及推广后取得的节水、增产经济效益和社会与生态环境效益.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[8] |
谭军利, 王林权, 王西娜, 等. 水肥异区交替灌溉对夏玉米生理指标的影响[J]. 西北植物学报, 2010,30(2):344-349.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[9] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[10] |
李广浩, 刘平平, 赵斌, 等. 不同水分条件下控释尿素对玉米产量和叶片衰老特性的影响[J]. 应用生态学报, 2017,28(2):571-580.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[11] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[12] |
张文东, 赵志成, 李曼, 等. 交替滴灌对日光温室黄瓜光合作用及抗氧化酶活性的影响[J]. 植物生理学报, 2017,53(11):1997-2006.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[13] |
原丽娜, 胡田田, 康绍忠, 等. 局部灌水方式下玉米根系对干旱及复水的生理生化响应[J]. 节水灌溉, 2010(9):15-23.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[14] |
原丽娜, 胡田田. 局部施氮对玉米生理生化特性和产量的影响[J]. 干旱地区农业研究, 2008,26(4):49-52.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[15] |
张仁和, 郭东伟, 张兴华, 等. 干旱胁迫下氮肥对玉米叶片生理特性的影响[J]. 玉米科学, 2012,20(6):118-122.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[16] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[17] |
漆栋良, 胡田田, 吴雪, 等. 适宜灌水施氮方式利于玉米根系生长提高产量[J]. 农业工程学报, 2015,31(11):144-149.
为研究不同灌水方式和施氮方式对玉米根系生长分布的影响,2011年在大田条件下采用垄植沟灌技术,设交替灌水、固定灌水、均匀灌水和交替施氮、固定施氮、均匀施氮2因素3水平的随机完全组合试验方案。分抽雄期、灌浆期和成熟期对0~100 cm土层监测植株正下方、植株正南侧和植株正北侧的根系生长状况。结果表明,灌水方式对各位置根长及根系总量影响均达显著水平,施氮方式只对植株南侧根长和根系总干质量影响显著,二者的交互作用只对植株北侧根长和总根长影响显著。交替灌水均匀施氮在监测时期内维持了较大总根长,并使得灌浆期植株不同位置根长、总根量(总根干质量除外)均较大,并最终获得较大的产量(11 524 kg/hm2)。而固定灌水固定施氮总根长最小,产量最低。各处理下0~40 cm土层根长所占整个土层根长比例均较高,该比值以交替灌水均匀施氮最大。对比发现,根系生长分布对灌水方式更加敏感,通过不同灌水与施氮调控玉米根系生长分布应集中在0~40 cm土层,交替灌水均匀施氮最有利于根系的生长和产量的提高,为垄植沟灌下较好的灌水施氮方式。该研究为通过不同灌水施氮方式调控作物根系生长并获得高产提供了一定理论依据。
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[18] |
漆栋良, 胡田田. 灌水施氮方式对玉米生育期土壤NO3-N时空分布的影响[J]. 农业机械学报, 2017,48(2):279-287.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[19] |
漆栋良, 胡田田, 宋雪. 适宜灌水施氮方式提高制种玉米产量及水氮利用效率[J]. 农业工程学报, 2018,34(21):98-104.
为通过不同灌水施氮方式调控干旱区作物收获指数提高资源利用效率,以制种玉米"金西北22号"为供试材料,进行了为期2 a的田间试验。试验采用灌水方式(交替灌水、固定灌水、均匀灌水)与施氮方式(交替施氮、固定施氮、均匀施氮)完全随机组合设计,测定生育期内作物耗水量(evapotranspiration,ET)和成熟期植株的生物量、籽粒产量及其构成(穗长、穗粗、行粒数和千粒质量等)和作物吸氮量,折算收获指数(harvest index,HI)、水分利用效率(water use efficiency,WUE)和氮利用效率(nitrogen use efficiency,NUE)。结果表明,灌水施氮方式只对行粒数有显著影响。ET只受灌水方式影响,交替灌水较其他灌水方式显著减小ET。WUE表现为:灌水方式相同时,交替施氮和均匀施氮大于固定施氮;施氮方式相同时,交替灌水>均匀灌水>固定灌水。玉米的吸氮量、HI和NUE与WUE表现出相似的规律。2013年交替灌水均匀施氮下制种玉米的HI、WUE和NUE最大,较均匀灌水均匀施氮分别增加5.46%、11.41%和19.73%。交替灌水交替施氮(水氮同区)的表现与交替灌水均匀施氮相似。2014年的结果与2013年一致。综上,交替隔沟灌溉均匀施氮和交替隔沟灌溉交替施氮(水氮同区)有利于提高制种玉米的产量和水氮利用效率。
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[20] |
鲁剑巍, 鲁君明, 陈防, 等. 江汉平原玉米施用磷肥效果研究[J]. 玉米科学, 2004,12(2):102-104.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[21] |
肖俊夫, 刘占东, 陈玉民. 中国玉米需水量及需水规律研究[J]. 玉米科学, 2008,16(4):21-25.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[22] |
张志良, 翟伟菁, 李小方. 植物生理学试验指导[M]. 北京: 高等教育出版社, 2008.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[23] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[24] |
徐祥玉, 张敏敏, 翟丙年, 等. 施氮对不同基因型夏玉米生理特性的影响[J]. 干旱地区农业研究, 2010,28(6):81-86.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[26] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[27] |
程铭慧. 时空亏缺灌溉对玉米生长、生理特性及水分利用效率的影响[M]. 杨凌:西北农林科技大学, 2019.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[28] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[29] |
吴立峰, 杨秀霞, 燕辉. 水分亏缺对苗期玉米生理特性的影响[J]. 排灌机械工程学报, 2017,35(12):1069-1074.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[30] |
张淑勇, 国静, 刘炜. 玉米苗期叶片主要生理生化指标对土壤水分的响应[J]. 玉米科学, 2011,19(5):68-72,77.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[31] |
闫伟平, 谭国波, 赵洪祥, 等. 吉林半干旱区不同灌溉方式对土壤水分变化及玉米产量的影响[J]. 玉米科学, 2012,20(5):111-114,120.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[32] |
胡田田, 康绍忠, 高明霞, 等. 玉米根系分区交替供应水、氮的效应与高效利用机理[J]. 作物学报, 2004,30(9):866-871.
用营养液培养进行玉米根系分区交替供应水氮的模拟实验,在不同时间测定了玉米各1/2根系的根系活力和根分泌物、根系和地上部干重及其含氮量。结果表明,处理1 d、3 d、5 d时,半边根系充分供应水分和(或)氮素,供应边根系活力显著大于胁迫边和对照;处理6 d时,半边供氮的根系分泌草酸显著增多,半边根系供水和半边根系供
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[33] |
Water-saving and drought-resistant rice (WDR) could substantially reduce irrigation water and meanwhile produce higher grain yield compared with paddy rice under water-saving irrigation. The mechanism underlain, however, is yet to be understood. We investigated if improved root traits would contribute to an increase in water productivity in WDR. Two rice varieties, each for WDR and paddy rice, were field-grown with two irrigation methods, continuous flooding (CF) and alternate wetting and drying (AWD) irrigation, which were imposed during the whole growing season. Under CF, grain yield, water productivity (grain yield over amount irrigation water and precipitation) and root morpho-physiological traits, such as root biomass and root oxidation activity (ROA), showed no significant difference between WDR and paddy rice. Under AWD, however, WDR exhibited greater root dry weight, root length density, ROA, total absorbing surface area and active absorbing surface area of roots, greater zeatin (Z) + zeatin riboside (ZR) contents in both roots and leaves, and higher activities of enzymes involved in sucroseto-starch conversion in grains during grain filing, in relative to paddy rice. Grain yield under AWD was significantly decreased for paddy rice compared with that under CF, but showed no significant difference for WDR between the two irrigation treatments. The WDR variety increased grain yield by 9.2-13.4% and water productivity by 9.0-13.7% over the paddy rice variety under AWD. The root dry weight was significantly correlated with shoot dry weight, and ROA and root Z + ZR content were significantly correlated with leaf photosynthetic rate, Z + ZR content in leaves and activities of key enzymes involved in sucroseto-starch conversion in grains. Collectively, the data suggest that improved morpho-physiological traits, as showing a greater root biomass, root length density, ROA and root Z + ZR content, contributes to higher grain yield and water productivity for WDR under water-saving irrigation. (C) 2013 Elsevier B.V.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[34] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
Collection(s)
/
〈 |
|
〉 |