
Lactic Dehydrogenase Gene Deletion Mutant of Enterobacter cloacae: Construction and Biological Characteristics
Shi Huiling, Zhou Yuhang, He Ping, Huang Mengmeng, Shao Shuai, Ge Jingping, Ling Hongzhi
Lactic Dehydrogenase Gene Deletion Mutant of Enterobacter cloacae: Construction and Biological Characteristics
The aims are to construct a lactic dehydrogenase mutant of Enterobacter cloacae by suicide plasmid recombination technique, and lay a foundation for further increasing acetoin yield and expanding the range of strain selection. The homologous fragment was inserted into the suicide plasmid pKR6K by double restriction endonuclease digestion, and the ldh gene knockout plasmid was constructed. Then the ldh gene of E.cloacae was knocked out by bacterial conjugation. Two homologous sequences of E.cloacae lactate dehydrogenase gene were successfully cloned with a length of 526 bp. Sequence alignment analysis showed that the sequence similarity of E.cloacae lactate dehydrogenase gene was 100%. By knocking out the lactate dehydrogenase gene of E.cloacae, a ldh deletion recombinant strain E.cloacae△ldh, was successfully constructed, while 2,3-butanediol and acetic acid were increased by 6.8% and 24.3%, respectively. The E.cloacae lactic dehydrogenase deletion engineering strain was successfully created, which lays a foundation for the industrial production of acetoin by the microbial method.
Enterobacter cloacae / lactate dehydrogenase / suicide plasmid / homologous recombination / gene knockout {{custom_keyword}} /
表1 引物序列 |
引物 | 序列5’-3’ | 酶切位点 | 用途 |
---|---|---|---|
ldh1F | AATTxxxxxGAATTChhhhhACCGTGTTAAGTTCAAGCGCACCAA | EcoRI | 克隆ldh基因上游片段526 bp |
ldh1R | AATTxxxxxGAATTCGGATCChhhhhAAGACTTTCTCCAGTGATTTTACAT | EcoRI, BamHI | |
ldh2F | AATTxxxxxTCTAGAhhhhhGCCGACATGCCGGGTGGCGGTTACG | XbaI | 克隆ldh基因下游片段526 bp |
ldh2R | AATTxxxxxGCATGCGTCGAChhhhhGGCGACGGTCATTATTTCGCAGGCG | SphI, SalI | |
ldh-up | TTTTTGGCGCAACGGTTGACGGTGC | — | 验证ldh基因敲除结果 |
ldh-down | ATGCGGGTCGCCGCCGCGCCTGCCA | — | |
ldhF | CGGCTTAGACTATCTCGTTAGGACAC | — | 克隆ldh基因 |
ldhR | GTCTTATGAAACTCGCGGTATATAGCAC | — |
注:下划线部分为酶切位点位置。 |
表2 ldh1和ldh2 PCR反应体系组分 |
PCR反应体系组分 | 添加量/μL | 终浓度 |
---|---|---|
Template DNA | 1 | — |
Forward primer (10 μmol/L) | 1 | 0.2 μmol/L |
Reverse primer (10 μmol/L) | 1 | 0.2 μmol/L |
TransStart® FastPfu DNA Polymerase | 1 | 2.5 units |
5× TransStart® FastPfu Buffer | 10 | 1× |
dNTPs (2.5 mmol/L) | 4 | 0.2 mmol/L |
ddH2O | Up to 50 | — |
表3 ldh1和ldh2 PCR反应程序 |
步骤 | 温度/℃ | 时间 | 循环数 |
---|---|---|---|
预变性 | 95 | 2 min | 1 |
变性 | 95 | 20 s | 35 |
退火 | 55 | 20 s | |
延伸 | 72 | 15 s | |
终延伸 | 72 | 5 min | 1 |
表4 E. cloacae和E. cloacae△ldh的摇瓶发酵产物的比较 |
产物浓度/(g/L) | 菌株 | 变化情况 | |
---|---|---|---|
E. cloacae | E. cloacae△ldh | ||
乙偶姻 | 2.83±0.48a(48 h) | 3.05±0.27a(48 h) | — |
乳酸 | 2.85±0.21a(12 h) | 0.01±0.01b(48h) | ↓ |
2,3-BD | 17.11±0.51b(12 h) | 18.28±0.42a(12 h) | ↑ |
丁二酸 | 2.08±0.24b(48 h) | 2.46±0.10a(24 h) | ↑ |
乙酸 | 2.92±0.20b(48 h) | 3.63±0.31a(48 h) | ↑ |
乙醇 | 2.81±0.11a(24 h) | 3.17±0.31a(24 h) | — |
注:括号中时间为相应产物最大产量时的时间;↑:提高;↓:下降;—:不变。 |
[1] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[2] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[3] |
刘晓霏, 付晶, 霍广鑫, 等. 生物法制备平台化合物乙偶姻的最新研究进展[J]. 中国生物工程杂志, 2015, 35(10):91-99.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[4] |
张小舟, 曾崇余, 任晓乾. 乙偶姻合成工艺[J]. 南京化工大学学报:自然科学版, 2001.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[5] |
胡明一, 王中. 食用香料乙偶姻[J]. 精细与专用化学品, 2002, 10(1):20-21.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[6] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[7] |
葛岚, 邵晓丛, 吴晓敏, 等. 工业化制备2,3-丁二醇的新途径[J]. 科技创新导报, 2009(33):106.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[8] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[9] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[10] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[11] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[12] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[13] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[14] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[15] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[16] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[17] |
王金星. B29菌株LPS合成基因缺失突变株的构建及分析[D]. 上海:上海交通大学, 2014.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[18] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[19] |
于慧敏, 马玉超. 工业微生物代谢途径调控的基因敲除策略[J]. 生物工程学报, 2010, 26(9):1199-1208.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[20] |
戴旭明, 薛红, 杨桦, 等. 基因打靶置换型载体的构建和应用研究[J]. 第二军医大学学报, 1998, 19(1):5-8.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[21] |
王鸿姣. 基因敲除技术[J]. 农村科学实验, 2017(4).
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[22] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[23] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[24] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[25] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[26] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[27] |
饶志明, 包腾, 张显, 等. 加强表达枯草芽孢杆菌葡萄糖-6-磷酸脱氢酶提高乙偶姻产量[P]. 2015.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[28] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |