Chlorella vulgar HDA04: Establishment of Growth Conditions

Huang Mengmeng, He Jianbo, Shi Huiling, Ling Hongzhi, Ge Jingping

PDF(1433 KB)
PDF(1433 KB)
Chinese Agricultural Science Bulletin ›› 2021, Vol. 37 ›› Issue (12) : 79-85. DOI: 10.11924/j.issn.1000-6850.casb2020-0338

Chlorella vulgar HDA04: Establishment of Growth Conditions

Author information +
History +

Abstract

To study the effects of antibiotic types and concentrations on biomass and relative oil content of Chlorella, and to optimize the contents of peptone and NaCl in culture medium, Chlorella vulgar HDA04 was used as the test algae strain, different concentrations of antibiotics were added into the culture medium. The biomass and oil content were detected and the medium composition was optimized. The results showed that three antibiotics (kanamycin, tetracycline and penicillin) were added to the initial BG11 medium, penicillin had the best optimization effect on Chlorella vulgar HDA04. When the concentration of penicillin, sodium chloride and peptone was 1.0 mg/L, 8 g/L and 1.5 g/L, respectively, the biomass and relative oil content of C. vulgar HDA04 reached the highest, and the highest biomass was 4.26±0.35 g/L, and the highest relative oil content was 27.04±1.13, which was 111% and 692.3% higher than control group (initial BG11 culture medium), respectively. Optimizing the culture conditions of Chlorella vulgar HDA04 lays a theoretical basis for biodiesel production by Chlorella vulgar, which has great significance to the exploration of microalgae in the alpine saline lake area.

Key words

microalgae / antibiotics / optimization of medium / biomass / oil content / chlorella / biodiesel / new energy / carbon industry

Cite this article

Download Citations
Huang Mengmeng , He Jianbo , Shi Huiling , Ling Hongzhi , Ge Jingping. Chlorella vulgar HDA04: Establishment of Growth Conditions. Chinese Agricultural Science Bulletin. 2021, 37(12): 79-85 https://doi.org/10.11924/j.issn.1000-6850.casb2020-0338

References

[1]
EI Arroussi H, Benhima R, El Mernissi N, et al. Screening of marine microalgae strains from Moroccan coasts for biodiesel production[J]. Renewable Energy, 2017,113:1515-1522.
[2]
Hallenbeck P C, Grogger M, Mraz M, et al. Solar biofuels production with microalgae[J]. Applied Energy, 2016,179:136-145.
[3]
夏金兰, 万民熙, 王润民, 等. 微藻生物柴油的现状与进展[J]. 中国生物工程杂志, 2010(7):118-126.
[4]
Subashchandrabose S R, Ramakrishnan B, Megharaj M, et al. Mixotrophic cyanobacteria and microalgae as distinctive biological agents for organic pollutant degradation[J]. Environment international, 2013,51:59-72.
[5]
Sadvakasova A K, Akmukhanova N R, Bolatkhan K, et al. Search for new strains of microalgae-producers of lipids from natural sources for biodiesel production[J]. International Journal of Hydrogen Energy, 2019,44(12):5844-5853.
[6]
Pauline S, Claire J C, Elie D, et al. Commercial applications of microalgae[J]. Journal of Bioscience and Bioengineering, 2006,101(2):87-96.
[7]
胡月薇, 史贤明. 新食品资源小球藻的生理活性与保健功能[J]. 中国食品学报, 2002,2(2):69-72.
[8]
张全斌. 褐藻多糖硫酸脂化学研究的进展[J]. 中国海洋药物, 1996(4):38-41.
[9]
赵培, 王雪青, 朱潮峰, 等. 3种常用抗生素应用于海洋微藻无菌化培养的研究[J]. 天津师范大学学报:自然科学版, 2007(02):27-30.
[10]
郝雯瑾, 王悠, 唐学玺. 除菌处理对强壮前沟藻和青岛大扁藻生长的影响[J]. 应用与环境生物学报, 2009,15(03):326-331.
[11]
王锦秀, 郝小红. 微藻制取生物柴油研究现状与发展[J]. 能源工程, 2013(1):40-43.
[12]
师文静, 廖莎, 孙启梅, 等. 东北地区产油微藻的筛选与鉴定[J]. 生物技术通讯, 2015,31(8):140-146.
[13]
Morgan-Kiss Rachael M, Priscu John C, Pocock Tessa, et al. Adaptation and acclimation of photosynthetic microorganisms to permanently cold environments.[J]. Microbiology and molecular biology reviews: MMBR, 2006,70(1):222-252.
[14]
Blanken W, Cuaresma M, Wijffels R H, et al. Cultivation of microalgae on artificial light comes at a cost[J]. Algal Res., 2013(2):333-340.
[15]
Jinlai M, Hongqi Shi, Yinghui J, et al. Studies on the biochemical composition of Antarctic ice algae and its relationship with low temperature adaptability[J]. Advances in Marine Science, 2002,20(4):43-50.
[16]
Schulze P S C, Hulatt C J, Morales-Sánchez D, et al. Fatty acids and proteins from marine cold adapted microalgae for biotechnology. Algal Research, 2019,42(10) 101604.
[17]
邓晓东, 蔡佳佳, 费晓雯. 微芒藻Micractinium sp. 18A8培养条件优化及碳源对含油量的影响[J]. 基因组学与应用生物学, 2012,31(6):597-602.
[18]
段露露, 杭伟, 程宇娇, 等. 杜氏盐藻促生菌株的分离与鉴定[J]. 生物技术通报, 2020,36(5):169-175.
[19]
凌婷, 杨树凡, 魏煜凡, 等. 2,4-表油菜素内酯和赤霉素对微拟球藻产油率及脂肪酸组成的影响[J]. 生物技术通报, 2018,34(6):178-182.
[20]
李志, 周秋香, 黎秋玲, 等. 微藻油脂含量的高效测定方法[J]. 生物技术通报, 2019,35(12):189-195.
[21]
Lin Y M, Ge J P, Ling H Z, et al. Isolation of a novel strain of Monoraphidium sp. and characterization of its potential for α-linolenic acid and biodiesel production[J]. Bioresource Technology, 267(2018):466-472.
[22]
王玲玲, 刘晓燕, 马贵范, 等. 杜氏盐藻无菌化处理及其对生长的影响[J]. 安徽农学通报, 2019,25(11):17-21.
[23]
郑凌凌, 张琪, 李天丽, 等. 雨生红球藻无菌化处理及其对生长和生理的影响[J]. 福建师范大学学报:自然科学版, 2017,33(01):44-50.
[24]
姜思, 刘莹莹, 佟少明. 4种常用抗生素对莱茵衣藻生长及光化学活性的影响[J]. 生物加工过程, 2017,15(2):14-20.
[25]
陈淑吟, 吉红九, 周亚文. 青霉素应用于三种海洋微藻保存培养的研究[J]. 水产养殖, 2004,3, 31-33.
[26]
冯倩, 王琳, 蔡忠贞, 等. 氮碳源和盐度对异养黄丝藻脂肪酸产量的影响[J]. 安徽农业科学, 2019,47(12):98-103.

RIGHTS & PERMISSIONS

Copyright reserved © 2021. Chinese Agricultural Association Bulletin. All articles published represent the opinions of the authors, and do not reflect the official policy of the Chinese Agricultural Association or the Editorial Board, unless this is clearly specified.
Share on Mendeley
PDF(1433 KB)

66

Accesses

0

Citation

Detail

Sections
Recommended

/