
Test-tube Seedlings of Atractylodes lancea (Thunb.) DC: ISSR and MSAP Analysis
Zhang Chengcai, Xiang Zengxu
Test-tube Seedlings of Atractylodes lancea (Thunb.) DC: ISSR and MSAP Analysis
The purpose of this study is to explore the genetic stability and DNA methylation changes of test tube plantlets of Atractylodes lancea (Thunb.) DC in long-term subculture, so as to ensure the quality of plantlets produced in factory. We established an efficient in vitro rapid propagation system for long-term subculture with young terminal buds of Atractylodes lancea and analyzed the test tube plantlets with different subculture times by ISSR and MSAP. The results showed that 10 samples with different generations had low genetic diversity and high genetic stability. Among them, the genetic similarity coefficient between the first generation and the tenth generation samples was the lowest, and the genetic relationship was far away. From the fourth generation of subculture, the bands of different primer amplification patterns changed in individual loci, and the change was more obvious with the increase of subculture times. After long-term subculture, the methylation level of test tube plantlet of A. lancea decreased, and the demethylation mode and methylation mode coexisted, but the demethylation mode was the main mode. The mutation phenomenon after long-term subculture might be caused by different culture conditions and culture time, resulting in gene reactivation and expression or inhibition, and demethylation mode was higher than methylation mode. The results of this study provide a theoretical basis for germplasm conservation and industrial production of A. lancea.
Atractylodes lancea (Thunb.) DC / subculture / inter-simple sequence repeat / methylation sensitive amplification polymorphism / DNA methylation {{custom_keyword}} /
表1 ISSR分析试验所用引物序列 |
引物 | 序列 |
---|---|
0531-018 | AGAGAGAGAGAGAGAGCTTG |
834 | AGAGAGAGAGAGAGAGYT |
836 | AGAGAGAGAGAGAGAGYA |
ISSR4 | GAGAGAGAGAGAGAGAYC |
ISSR6 | GTGTGTGTGTGTGTGTYA |
ISSR7 | AGAGAGAGAGAGAGAGYC |
ISSR31 | AGAGAGAGAGAGAGAGYC |
ISSR35 | CACACACACACACACARG |
ISSR50 | GAGAGAGAGAGAGAGAC |
P10-873 | GACAGACAGACAGACA |
表2 MSAP分析试验所用接头和引物信息 |
接头与引物 | 引物序列(5’-3’) |
---|---|
EcoR I 接头1 | CTCGTAGACTGCGTACC |
EcoR I 接头2 | AATTGGTACGCAGTCTAC |
HM 接头1 | GACGATGAGTCCTGAG |
HM 接头2 | CGCTCAGGACTCAT |
E00 | GACTGCGTACCAATTC |
MSP00 | GATGAGTCCTGAGCGG |
E34 | GACTGCGTACCAATTCAAT |
E38 | GACTGCGTACCAATTCACT |
E40 | GACTGCGTACCAATTCAGC |
E41 | GACTGCGTACCAATTCAGG |
E44 | GACTGCGTACCAATTCATC |
E46 | GACTGCGTACCAATTCATT |
E50 | GACTGCGTACCAATTCCAT |
E77 | GACTGCGTACCAATTCGTG |
MSP39 | GATGAGTCCTGAGCGGAGA |
MSP40 | GATGAGTCCTGAGCGGAGC |
MSP41 | GATGAGTCCTGAGCGGAGG |
MSP44 | GATGAGTCCTGAGCGGATC |
MSP50 | GATGAGTCCTGAGCGGCAT |
MSP59 | GATGAGTCCTGAGCGGCTA |
MSP60 | GATGAGTCCTGAGCGGCTC |
MSP61 | GATGAGTCCTGAGCGGCTG |
表3 10个样本遗传多样性分析结果 |
引物 | Na | Ne | H | I | 多态位点 | 多态百分数/% |
---|---|---|---|---|---|---|
0531-018 | 1.6667±0.4924 | 1.4500±0.4135 | 0.2557±0.2122 | 0.3768±0.2990 | 8 | 66.67 |
834 | 1.3750±0.5175 | 1.2920±0.4440 | 0.1579±0.2284 | 0.2277±0.3230 | 3 | 37.50 |
836 | 1.5714±0.5354 | 1.3880±0.4392 | 0.2196±0.2246 | 0.3239±0.3189 | 4 | 57.14 |
ISSR31 | 1.5455±0.5222 | 1.4352±0.4498 | 0.2368±0.2349 | 0.3399±0.3322 | 6 | 54.55 |
ISSR35 | 1.8750±0.3536 | 1.5437±0.3451 | 0.3177±0.1789 | 0.4718±0.2447 | 7 | 87.50 |
ISSR4 | 1.2500±0.5000 | 1.2455±0.4910 | 0.1239±0.2477 | 0.1721±0.3443 | 1 | 25.00 |
ISSR50 | 1.6364±0.5045 | 1.4360±0.4343 | 0.2442±0.2193 | 0.3591±0.3074 | 7 | 63.64 |
ISSR6 | 1.6667±0.5164 | 1.4520±0.4422 | 0.2561±0.2217 | 0.3777±0.3121 | 4 | 66.67 |
ISSR7 | 1.5714±0.5345 | 1.4746±0.4929 | 0.2514±0.2479 | 0.3587±0.3464 | 4 | 57.14 |
P10-873 | 1.5000±0.5477 | 1.3709±0.4305 | 0.2098±0.2345 | 0.3045±0.3371 | 3 | 50.00 |
注:Na:观察等位基因数;Ne:有效等位基因数;H:Nei’s基因多样性;I:信息指数。 |
表4 基于ISSR标记的10个样品的遗传相似系数矩阵 |
J | G | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
---|---|---|---|---|---|---|---|---|---|---|
J | 1.0000 | |||||||||
G | 0.9625 | 1.0000 | ||||||||
2 | 0.9125 | 0.9500 | 1.0000 | |||||||
3 | 0.5125 | 0.4750 | 0.5000 | 1.0000 | ||||||
4 | 0.5750 | 0.5625 | 0.5875 | 0.8875 | 1.0000 | |||||
5 | 0.5875 | 0.5750 | 0.6000 | 0.8750 | 0.9875 | 1.0000 | ||||
6 | 0.5125 | 0.4750 | 0.5000 | 0.9750 | 0.8875 | 0.8750 | 1.0000 | |||
7 | 0.5000 | 0.4875 | 0.5125 | 0.9325 | 0.9250 | 0.9125 | 0.9375 | 1.0000 | ||
8 | 0.5250 | 0.5125 | 0.5375 | 0.9125 | 0.9250 | 0.9125 | 0.9125 | 0.9500 | 1.0000 | |
9 | 0.5250 | 0.4875 | 0.5125 | 0.9375 | 0.9000 | 0.8875 | 0.9375 | 0.9250 | 0.9750 | 1.0000 |
表5 样品J与样品9基因组DNA甲基化水平分析 |
模式 | 带型 | 条带数及比例 | ||
---|---|---|---|---|
HapⅡ | Msp Ⅰ | J | 9 | |
1 | 1 | Ⅰ(非甲基化) | 239 | 242 |
1 | 0 | Ⅱ(半甲基化) | 102 | 155 |
0 | 1 | Ⅲ(全甲基化) | 394 | 298 |
0 | 0 | Ⅳ(超甲基化) | 408 | 448 |
总扩增带数 | 735 | 695 | ||
总甲基化带数 | 904 | 901 | ||
全甲基化带数 | 802 | 746 | ||
总甲基化率/% | 79.09 | 78.83 | ||
全甲基化率/% | 70.17 | 65.27 | ||
半甲基化率/% | 8.92 | 13.56 |
注:总甲基化率=[(I+Ⅱ+Ⅲ)]/(I+Ⅱ+Ⅲ+Ⅳ)]×100%;全甲基化率=[(I+II)]/(I+Ⅱ+Ⅲ+Ⅳ)]×100%;半甲基化率=[Ⅲ/(I+Ⅱ+Ⅲ+Ⅳ)]×100%。 |
表6 样品J与样品9基因组DNA甲基化模式分析 |
模式 | 类型 | 带型 | 条带数 | 百分比/% | 甲基化变化 | |||
---|---|---|---|---|---|---|---|---|
无变化 | A1 | 1 | 1 | 1 | 1 | 186 | 67.30 | 非甲基化----非甲基化 |
A2 | 1 | 0 | 1 | 0 | 42 | 半甲基化----半甲基化 | ||
A3 | 0 | 1 | 0 | 1 | 307 | 全甲基化----全甲基化 | ||
去甲基化 | B1 | 1 | 0 | 1 | 1 | 21 | 18.87 | 半甲基化----非甲基化 |
B2 | 0 | 1 | 1 | 1 | 14 | 全甲基化----非甲基化 | ||
B3 | 0 | 0 | 1 | 1 | 18 | 超甲基化----非甲基化 | ||
B4 | 0 | 0 | 1 | 0 | 48 | 超甲基化----半甲基化 | ||
B5 | 0 | 0 | 0 | 1 | 49 | 超甲基化----全甲基化 | ||
甲基化 | C1 | 1 | 1 | 1 | 0 | 11 | 13.46 | 非甲基化----半甲基化 |
C2 | 1 | 1 | 0 | 1 | 35 | 非甲基化----全甲基化 | ||
C3 | 1 | 1 | 0 | 0 | 5 | 非甲基化----超甲基化 | ||
C4 | 1 | 0 | 0 | 0 | 35 | 半甲基化----超甲基化 | ||
C5 | 0 | 1 | 0 | 0 | 21 | 全甲基化----超甲基化 |
[1] |
中华人民共和国药典:2015年一部[S] 北京: 中国医药科技出版社, 2015: 161.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[2] |
宋刚, 徐银, 史俊, 等. 茅苍术规模化组培快繁体系的建立[J]. 江西农业学报, 2018,30(9):63-67.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[3] |
王红娟, 杨岚, 向增旭. 药用植物茅苍术工厂化育苗关键技术研究[J]. 药物生物技术, 2014,21(2):152-155.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[4] |
高亚曼, 李妹芳, 冀芦沙. 珍珠半夏(Pinellia ternate)高效再生体系的建立及其遗传稳定性检测[J]. 分子植物育种, 2016,14(4):980-985.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[5] |
王小利, 王茜, 舒健虹, 等. 氮胁迫下高羊茅基因组DNA甲基化的MSAP分析[J]. 基因组学与应用生物学, 2015,34(11):2362-2371.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[6] |
苗徐静, 文壮, 文晓鹏. 草莓组培苗遗传稳定性的ISSR检测及DNA甲基化变异[J]. 分子植物育种, 2019,17(2):531-538.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[7] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[8] |
王聪聪, 邢世岩, 李际红, 等. 不同单株叶籽银杏DNA甲基化水平与模式的MSAP分析[J]. 核农学报, 2013,27(4):399-407.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[9] |
许梦云, 吴沿友, 赵玉国, 等. 道地药材茅苍术的ISSR分析[J]. 河南农业科学, 2009(07):90-93.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[10] |
王红娟. 茅苍术同源四倍体离体诱导与鉴定及其遗传变异研究[D]. 南京:南京农业大学, 2015: 2.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[11] |
韩盼盼, 王红娟, 向增旭. 桔梗同源四倍体诱导及其基因组DNA甲基化差异分析[J]. 中国中药杂志, 2015,40(23):396-402.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[12] |
刘福平. 植物体细胞无性系变异的遗传基础及主要影响因素[J]. 基因组学与应用生物学, 2010,29(6):1142-1147.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[13] |
刘玲梅, 汤浩茹, 刘娟. 试管苗长期继代培养中的形态发生能力与遗传稳定性[J]. 生物技术通报, 2008,5:25-29.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[14] |
聂琼, 文晓鹏. 火龙果组培苗体细胞无性系变异及其分子检测[J]. 果树学报, 2017, 34(12):1527-1529.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[15] |
李卫东. 番木瓜组培苗生产体系的优化及质量监测体系的建立[D]. 海口:华南热带农业大学, 2006.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[16] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[17] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |