
Dynamic Response of the Soil Physical and Chemical Properties Under Simulated Snow Cover in the Sanjiang Plain
Chai Chunrong, Ni Hongwei, Liu Yingnan, Zhang Rongtao, Yang Jixian
Dynamic Response of the Soil Physical and Chemical Properties Under Simulated Snow Cover in the Sanjiang Plain
To study the dynamic response of soil physical and chemical properties to temperature changes under different snow treatments, soil samples from the Calamagrostis angustifolia wetland in the Sanjiang Plain were collected, and four snow treatments W0 (31.05%), W1200 (42.66%), W3000 (51.21%) and W6000 (76.66%) were simulated in the laboratory, and soil physical and chemical properties were tested. The results showed that the treatment of W6000 significantly increased soil pH; the three snow treatments significantly increased the content of soil soluble organic carbon; the treatment of W3000 and W6000 significantly increased the content of soil ammonium nitrogen; the treatment of W6000 significantly reduced the soil nitrate nitrogen content; different snow treatments had no significant effect on soil total phosphorus and available phosphorus; W1200 treatment significantly increased soil microbial biomass carbon, while W6000 treatment significantly reduced soil microbial biomass carbon; W1200 treatment significantly increased soil microbial biomass nitrogen, W3000 treatment significantly reduced soil microbial biomass nitrogen. Soil temperature under different snow treatments was the main influencing factor for the change of soil physical and chemical properties. Different snow treatments would change the physical and chemical properties of the soil during the freezing and thawing period, which had an important impact on the carbon and nitrogen cycle of the wetland ecosystem.
Sanjiang plain / Calamagrostis angustifolia wetland / snow cover / soil physical and chemical properties / soil temperature {{custom_keyword}} /
[1] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[2] |
傅国海, 杨其长, 刘文科, 等. 根区温度对设施作物生理生态影响的研究进展[J]. 中国蔬菜, 2016(10):20-27.
设施作物对根区温度变化的反应较空气温度更加敏感,根区温度的变化能够引起作物生理生态的剧烈变化。本文系
统总结了根区温度对设施园艺作物根系和冠层的生理生态影响及作用机制,阐述了设施园艺作物根区温度调控方法与技术研 究进展,以及研究中存在的问题,并对未来的研究方向进行了展望。 {{custom_citation.content}}
{{custom_citation.annotation}}
|
[3] |
易建华, 贾志红, 孙在军. 不同根系土壤温度对烤烟生理生态的影响[J]. 中国生态农业学报, 2008(1):62-66.
采用不同覆盖材料调控烟株根系土壤温度的方法,研究覆盖后不同土壤温度对烤烟生理生态的影响.结果表明:烟草幼苗早期400 ℃的积温是培育壮苗的临界温度,400 ℃以上积温虽可增加烟株株高和根长,但综合生长生理性状不佳,干物质积累少,表现为徒长状态,而在积温400 ℃以下随土壤积温增加,各种生长生理性状趋优,生长健壮,有利培育壮苗;各种覆盖材料都表现为气温高时,增温效果明显,不同覆盖材料材质差异较大,覆盖后地温变幅亦较大;大棚膜 稻草苗期覆盖是预防烤烟移栽后冷害的有效方法.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[4] |
曾希柏. 土壤肥力生物热力学及其理论进展[J]. 土壤通报, 1996(6):273-276.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[5] |
尹翠, 孙利鑫, 董艳, 等. 根区土壤加温对塑料大棚内红地球葡萄生长发育和品质的影响[J]. 浙江农林大学学报, 2016,33(6):1092-1097.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[6] |
Implementation Office of the National Forestry Administration on “Convention on Wetlands”. Guidelines for the Implementation of the “Convention on Wetlands”[C]. Chinese forestry publishing press, 2001.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[7] |
张立,
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[8] |
马克平. 试论生物多样性的概念[J]. 生物多样性, 1993(1):24-26.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[9] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[10] |
张荣涛, 付晓宇, 王康, 等. 三江平原小叶章湿地碳排放对雪被变化的短期响应[J]. 应用生态学报, 2020,31(4):1314-1322.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[11] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[12] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[13] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[14] |
王洋, 刘景双, 王国平, 等. 冻融作用与土壤理化效应的关系研究[J]. 地理与地理信息科学, 2007(2):91-96.
冻融使土壤经历一系列物理、化学和生物变化过程,冻融作用对土壤的影响主要表现为:改变土壤结构、含水量分布和水热运动,影响微生物活性和以微生物为媒介的有机质矿化作用,改变土壤元素的生物地球化学循环过程,从而对土壤生态系统结构和功能产生影响.冻融作用对土壤理化性质的作用主要受冻融速率、温度、冻融交替次数和土壤含水量、pH值、有机质、土壤质地状况等因素的影响.通过冻融作用改善土壤结构,提高土壤微生物活性和养分的有效性,有利于耕作和促进植物生长,但也可通过含水量的重新分布和径流淋失而导致土壤养分损失.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[15] |
李琳慧, 李旭, 许梦, 等. 冻融温度对东北黑土理化性质及土壤酶活性的影响[J]. 江苏农业科学, 2015,43(4):318-320.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[16] |
周旺明, 秦胜金, 刘景双, 等. 沼泽湿地土壤氮矿化对温度变化及冻融的响应[J]. 农业环境科学学报, 2011,30(4):806-811.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[17] |
李娜. 冻融作用对吉林西部典型土壤碳氮酶的影响机制及温室气体排放研究[D]. 吉林大学, 2012: 3-12.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[18] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[19] |
周旺明, 王金达, 刘景双, 等. 冻融对湿地土壤可溶性碳、氮和氮矿化的影响[J]. 生态与农村环境学报, 2008,24(3):1-6.
通过室内模拟试验,研究了不同冻融循环过程(-5—5℃或-25—5℃)对沼泽湿地土壤可溶性有机碳(DOC)、可溶性有机氮(DON)以及土壤有机氮矿化过程的影响。结果表明,随着冻融次数的增加,土壤DOC和DON含量呈先增加后降低趋势,土壤DOC含量在冻融1次(-5—5℃或-25—5℃冻融循环处理)后达最大值,而土壤DON分别在冻融2次(-5—5℃冻融循环处理)和4次(-25—5℃冻融循环处理)后达最大值。这说明在短期内冻融交替对土壤DOC和DON含量的影响较明显。冻结温度和冻融次数显著影响土壤有机氮矿化过程,且-25—5℃冻融循环比-5—5℃冻融循环矿化累积量高。冻融循环促进了土壤有机氮的矿化,有利于土壤有效氮的累积,为春季植物生长提供足够的氮素,对维持湿地生态系统稳定具有重要意义。
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[20] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[21] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[22] |
史作民, 刘世荣, 程瑞梅. 内蒙古鄂尔多斯地区四个植物群落类型的土壤碳氮特征[J]. 林业科学, 2004,40(2):21-27.
对内蒙古鄂尔多斯地区本氏针茅、油蒿、牛心朴子和严重退化地等四种主要植物群落类型土壤碳氮特征进行了研究。结果表明:各群落类型土壤0~10、10~30和30~60cm层次有机碳含量的季节变化多不明显;不同群落0~10和10~30cm层土壤全氮含量的季节变化多表现出显著水平,基本表现为5月明显高于7月和9月,而7月和9月的含量相差不大;各群落类型0~10cm层土壤硝态氮有显著的季节变化,5月明显大于7月和9月;不同群落各层土壤铵态氮的季节变化均达到极显著水平,表现为5月>7月>9月。有机碳和全氮含量在不同季节各群落土壤中的垂直分布规律比较一致,即0~10cm >10~30cm >30~60cm ;不同季节各群落类型土壤硝态氮含量垂直规律不明显,仅5月0~10cm层的含量明显大于其它层次;不同季节各群落土壤的铵态氮没有垂直分布规律。虽然不同季节各土层有机碳含量的群落间差异有些已达到显著水平,0~10cm层土壤的全氮含量在群落间多表现出显著差异,各土层硝态氮和铵态氮含量5月和7月的群落间差异更是达到极显著水平,但这些差异在群落间没有明显的规律性。
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[23] |
陈哲, 韩瑞芸, 杨世琦, 等. 东北季节性冻融农田土壤CO2、CH4、N2O通量特征研究[J]. 农业环境科学学报, 2016,35(2):387-395.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[24] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[25] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[26] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[27] |
叶彦辉, 刘云龙, 韩艳英, 等. 氮沉降对西藏高山灌丛草甸土壤理化性质的短期影响[J]. 草地学报, 2017,25(5):973-981.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[28] |
涂利华, 胡庭兴, 张健, 等. 模拟氮沉降对华西雨屏区苦竹林土壤有机碳和养分的影响[J]. 植物生态学报, 2011,35(2):125-136.
从2007年11月至2009年10月, 对华西雨屏区苦竹(Pleioblastus amarus)人工林进行了模拟氮(N)沉降试验, N沉降水平分别为对照(CK, 0 g N·m–2·a–1)、低N (5 g N·m–2·a–1)、中N (15 g N·m–2·a–1)和高N (30 g N·m–2·a–1)。在N沉降进行1年后, 每月采集各样方0–20 cm的土壤样品, 连续采集12个月, 测定其土壤总有机C、微生物生物量C、浸提性溶解有机C、活性C、全N、微生物生物量N、NH4+-N、NO3–-N、有效P和速效K。结果表明: N沉降显著增加了土壤总有机C、微生物生物量C、全N、微生物生物量N、NH4+-N和有效P含量, 对其余几个指标无显著影响。土壤微生物生物量C和微生物生物量N的季节变化明显, 并与气温极显著正相关。土壤有效P、速效K与微生物生物量C、微生物生物量N呈极显著负相关关系。N沉降提高了土壤中C、N、P元素的活性, 并通过微生物的转化固定作用使得C、N、P元素在土壤中的含量增加。苦竹林生态系统处于N限制状态, 土壤有机C和养分对N沉降呈正响应, N沉降的增加可能会提高土壤肥力并促进植被的生长, 进而促进生态系统对C的固定。
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[29] |
裴广廷, 马红亮, 高人, 等. 模拟氮沉降对森林土壤速效磷和速效钾的影响[J]. 中国土壤与肥料, 2014(4):16-20.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[30] |
张天雪. 海河流域油松林地土壤微生物特征及影响因素研究[D]. 2015.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[31] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[32] |
王志明, 朱培立, 黄东迈, 等. 水旱轮作条件下土壤有机碳的分解及土壤微生物量碳的周转特征[J]. 江苏农业学报, 2003,19(1):33-36.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[33] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[34] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[35] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[36] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[37] |
胡霞, 尹鹏, 王智勇, 等. 雪被厚度和积雪周期对土壤氮素动态影响的初步研究[J]. 生态环境学报, 2014(4):593-597.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[38] |
Microorganisms have a variety of evolutionary adaptations and physiological acclimation mechanisms that allow them to survive and remain active in the face of environmental stress. Physiological responses to stress have costs at the organismal level that can result in altered ecosystem-level C, energy, and nutrient flows. These large-scale impacts result from direct effects on active microbes' physiology and by controlling the composition of the active microbial community. We first consider some general aspects of how microbes experience environmental stresses and how they respond to them. We then discuss the impacts of two important ecosystem-level stressors, drought and freezing, on microbial physiology and community composition. Even when microbial community response to stress is limited, the physiological costs imposed on soil microbes are large enough that they may cause large shifts in the allocation and fate of C and N. For example, for microbes to synthesize the osmolytes they need to survive a single drought episode they may consume up to 5% of total annual net primary production in grassland ecosystems, while acclimating to freezing conditions switches Arctic tundra soils from immobilizing N during the growing season to mineralizing it during the winter. We suggest that more effectively integrating microbial ecology into ecosystem ecology will require a more complete integration of microbial physiological ecology, population biology, and process ecology.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |