
Antibacterial and Antioxidant Effects of Ultrasound Extract of Glycyrrhiza uralensis
Li Wenfen, Sun Ruige, Wang Bo
Antibacterial and Antioxidant Effects of Ultrasound Extract of Glycyrrhiza uralensis
To find a safe food preservative, this study explored the antibacterial and antioxidant effects of Glycyrrhiza ultrasonic extract. Experiments with Escherichia coli and Bacillus subtilis were made to determine the radius of bacteriostatic circle by agar diffusion method. Antioxidant activity (DPPH scavenging ability and anti-O-phenylene three phenol self-oxidation) of each sample were investigated. Under the effect of Glycyrrhiza extract, the inhibition circle radius of E. coli reached 1.01 ± 0.08 cm, and the inhibition circle radius of B. subtilis reached 0.96 ± 0.03 cm after 18 hours of culture. Also, the free radical scavenging ability to DPPH was 93.1%, which was significantly higher than that of the control group (0.1mg/ml vitamin C). The highest anti-O-phenylene three phenol self-oxidation effect was 87.57%. In general, the extract of Glycyrrhiza uralensis has good antibacterial effect on the above two kinds of bacteria, and has certain antioxidant effect on DPPH and O-phenylene three phenol.
Glycyrrhiza uralensis Fisch / ultrasound extract / antibacterial activity / antioxidant {{custom_keyword}} /
表1 大肠杆菌抑菌圈变化情况 cm |
培养18 h后的 时间点 | 青霉素 (阳性对照组) | 甘草提取液 原液 | 90%甘草 提取液 | 80%甘草 提取液 | 70%甘草 提取液 |
---|---|---|---|---|---|
1 h | 0.67±0.06b | 0.98±0.03a | 0.73±0.05b | 0.55±0.03c | 0.34±0.03d |
2 h | 0.71±0.06b | 1.00±0.08a | 0.77±0.04b | 0.57±0.03c | 0.37±0.02d |
3 h | 0.75±0.06b | 1.01±0.08a | 0.80±0.04b | 0.60±0.04c | 0.41±0.03d |
4 h | 0.78±0.05b | 1.01±0.06a | 0.82±0.02b | 0.63±0.03c | 0.45±0.04d |
5 h | 0.81±0.06b | 1.00±0.04a | 0.84±0.05b | 0.66±0.03c | 0.48±0.02d |
6 h | 0.82±0.05b | 0.98±0.06a | 0.85±0.04b | 0.68±0.03c | 0.50±0.04d |
注:不同字母表示同列数据间差异显著(P>0.05),下同。 |
表2 枯草芽孢杆菌抑菌圈变化情况 cm |
培养18 h后的时间点 | 青霉素(阳性对照组) | 甘草提取液原液 | 90%甘草提取液 | 80%甘草提取液 | 70%甘草提取液 |
---|---|---|---|---|---|
1 h | 0.48±0.06c | 0.92±0.02a | 0.70±0.05b | 0.47±0.02c | 0.23±0.02d |
2 h | 0.65±0.02c | 0.95±0.04a | 0.72±0.02b | 0.53±0.02d | 0.34±0.03e |
3 h | 0.71±0.04b | 0.95±0.05a | 0.73±0.04b | 0.58±0.03c | 0.38±0.02d |
4 h | 0.75±0.04b | 0.96±0.03a | 0.74±0.05b | 0.59±0.03c | 0.41±0.04d |
5 h | 0.78±0.04b | 0.95±0.03a | 0.75±0.04b | 0.60±0.04c | 0.43±0.02d |
6 h | 0.81±0.04b | 0.94±0.03a | 0.76±0.03c | 0.62±0.02d | 0.45±0.04e |
表3 不同浓度甘草提取液DPPH自由基清除能力 |
维生素C | 甘草提取液原液 | 90%甘草提取液 | 80%甘草提取液 | 70%甘草提取液 |
---|---|---|---|---|
84.8%±0.2%c | 93.1%±0.5%a | 89.1%±0.5%b | 84.6%±0.6%c | 74.4%±8.9%d |
表4 不同浓度甘草提取液抗邻苯三酚自氧化清除率 |
甘草提取液原液 | 90%甘草提取液 | 80%甘草提取液 | 70%甘草提取液 |
---|---|---|---|
87.57%±4.08%a | 78.18%±3.93%b | 68.79%±3.81%c | 53.03%±2.14%d |
[1] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[2] |
赵雨坤, 李立, 刘学, 等. 基于系统药理学探索甘草有效成分甘草甜素的药理作用机制[J]. 中国中药杂志, 2016,41(10):1916-1920.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[3] |
李启杰. 复方甘草酸苷诱导抗病毒分子及免疫调节机制的体外研究[D]. 成都:成都中医药大学, 2013.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[4] |
王丽, 张毓, 陈翠岚. 我国食品防腐剂的应用及发展趋势[J]. 食品安全质量检测学报, 2011,2(2):83-87.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[5] |
吴莹, 包晓玮, 陈勇, 等. 核桃(Juglans regia L.)青皮提取物抗氧化及抑菌活性的研究[J]. 畜牧兽医学报, 2017,48(6):1118-1127.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[6] |
肖文平, 齐潇星. 三叶委陵菜不同溶剂萃取物抗氧化活性研究[J]. 黄冈师范学院学报, 2018,179(3):31-34.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[7] |
黄泽敬, 陈全斌, 陈璐. 八角叶不同溶剂提取物的抗氧化活性研究[J]. 广州化工, 2016(2):79-81.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[8] |
张海英, 周龙龙, 姜林, 等. 新疆阿魏抗氧化活性部位研究[J]. 中国中医药信息杂志, 2015,22(3):80-82.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[9] |
陈林林, 张伟, 王振兴, 等. 邻苯三酚自氧化法测定甲烷氧化菌素-铜配合物的超氧化物歧化酶活性[J]. 食品安全质量检测学报. 2017,8(9):3438-3444.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[10] |
张雪, 苗婷婷, 陆炯, 等. 天然产物抗氧化活性评价方法研究进展[J]. 广州化工, 2017,45(19):7-10.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[11] |
步琳. 喜盐草黄酮类化合物的提取、纯化及抗氧化活性研究[D]. 青岛:中国海洋大学, 2015.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[12] |
王素君, 张良晓, 李培武. 紫苏籽油抗菌活性研究[J]. 中国食物与营养. 2017,23(11):38-41.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[13] |
梁艳琼, 黄兴, 吴伟怀, 等. 解淀粉芽孢杆菌TWC2发酵条件的优化[J]. 中国糖料, 2017,39(6):17-22.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[14] |
韩亚男, 张学静, 侯俊玲, 等. 野生和栽培甘草不同器官中总黄酮和总多糖的动态积累规律研究[J]. 北京中医药大学学报, 2014,37(5):344-348,353.
目的 揭示不同生长期甘草器官中总黄酮和总多糖的积累规律。方法 采用紫外-可见光分光光度法测定5 月至9 月间野生和栽培甘草器官中总黄酮和总多糖的含量,探索积累规律,分析其在野生和栽培之间的异同,并用不同产地的甘草验证其积累规律。结果 甘草根和叶中的总黄酮、总多糖积累规律在野生品和栽培品之间表现一致。根中总黄酮含量在生长期呈现“V”型变化趋势,在盛花期达到最低点即野生甘草根为2.43%;栽培甘草根为1.85%。叶中总黄酮积累规律正好与根相反,呈现倒“V”型变化趋势,在盛花期达到最高点即野生甘草叶为5.64%;栽培甘草叶为6.02%。在甘草不同器官中,野生和栽培甘草均是盛花期叶子中的总黄酮含量最高,但不同产地的甘草叶中含量有差异。野生与栽培甘草各器官中总多糖的变化趋势比较复杂,整体都呈现先升高后降低的倒“V”趋势。但栽培甘草根中的总多糖含量在整个生长期保持持续增长的状态,在果熟期达到最高值为18.20%。结论 可选择盛花期的甘草叶进行总黄酮的研究和利用,果熟期栽培根中甘草多糖较多,可以重点开发。
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[15] |
闻庆, 庞玉新, 胡璇, 等. 艾纳香残渣不同提取部位体外抑菌活性研究[J]. 广东药学院学报, 2015,31(6):713-716.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[16] |
刘慧. 桃果实酚类物质及其抗氧化功能研究[D]. 北京:中国农业大学, 2015.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[17] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[18] |
王晓红, 张文静. 复合酶微囊中淀粉酶活力测定方法的建立[J]. 基层医学论坛, 2014(28):3773-3775.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[19] |
杨硕, 盛洁静. 黄连、甘草制黄连乙醇粗提物体外抗菌活性比较[J]. 哈尔滨商业大学学报:自然科学版, 2018,34(6):641-643.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[20] |
崔鑫, 朱广艺, 胡建军, 等. 甘草提取物对1株致犊牛腹泻大肠杆菌生物膜抑制作用的试验[J]. 中国兽医杂志, 2019,55(3):21-25.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[21] |
李越峰, 辛二旦, 司昕蕾, 等. 甘草提取工艺研究[J]. 中兽医医药杂志, 2019,38(6):44-47.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[22] |
申美伦, 刘广欣, 梁业飞, 等. 甘草酸和甘草次酸提取分离方法的研究进展[J]. 食品工业科技, 2019,40(18):326-333.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[23] |
赵森铭, 李慧晓, 张志超, 等. 甘草水提后药渣的化学成分及抗氧化活性研究[J]. 广东药科大学学报, 2019(5):1-5.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[24] |
李想, 李冀. 甘草提取物活性成分药理作用研究进展[J]. 江苏中医药, 2019,51(5):81-86.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[25] |
乌兰其其格, 宋学军, 段雪琴, 等. 甘草多糖的提取及其抗氧化活性研究[J]. 赤峰学院学报:自然科学版, 2019,35(6):36-38.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[26] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[27] |
CONTEXT: Calcineurin (CN), a unique protein phosphatase, plays an important role in immune regulation. Our laboratory has established an effective molecular drug-screening model based on CN activity. OBJECTIVE: Our aim is to search for an effective immunosuppressant from Glycyrrhiza uralensis (Leguminosae). MATERIALS AND METHODS: As guided by CN inhibitory test, an active compound was purified and identified as glycyrol. Immunosuppressive activity of glycyrol in vitro was assayed by T lymphocytes proliferation and mixed lymphocyte reaction (MLR). In addition, delayed-type hypersensitivity reaction (DTH) and skin allograft test in vivo were also carried out. Further, we have investigated the effect of glycyrol on phorbol 12-myristate 13-acetate (PMA)/ionomycin (Io)-stimulated IL-2 expression in Jurkat cells. RESULTS: The enzymatic assay showed glycyrol (IC(50) = 84.6 muM) inhibited calcineurin activity in a dose-dependent manner. Glycyrol, at the non-cytotoxic concentration, significantly inhibited proliferation of murine spleen T lymphocytes induced by Concanavalin A (Con A) and mixed lymphocyte reaction (MLR) in vitro. In addition, mice treated with glycyrol had shown the dose-dependent decrease in delayed type hypersensitivity (DTH) and prolonged the graft survival by 59% compared to the control group (*p < 0.05). RT-PCR showed glycyrol suppressed IL-2 production in a concentration-dependent manner. DISCUSSION AND CONCLUSION: Our results show the immunosuppressive activity of glycyrol and this activity should be due to its inhibitory effect on CN activity, thereby suppressing IL-2 production and regulating T lymphocytes. Thus, glycyrol could be a candidate for development as a novel immunomodulatory drug.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[28] |
彭灿, 谢晓婷, 彭代银, 等. 不同产地甘草水提液和醇提液指纹图谱研究[J]. 中草药, 2019,50(15):3569-3574.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[29] |
徐春明, 李婷, 王英英, 等. 微波辅助双水相提取苦荞麦粉中黄酮类化合物[J]. 食品科学技术学报, 2014,32(6):36-41.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[30] |
王鹏旭, 成传香, 马亚琴, 等. 超声声学效应在果蔬酚类化合物提取中的研究进展[J]. 食品科学, 2019,40(17):338-347.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |